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Abstract

We present a 3D constitutive model for NiTi polycrystalline shape memory alloys
exhibiting transformations between three solid phases (austenite, R-phase, marten-
site). The “full modeling sequence” comprising of formulation of modeling assump-
tions, construction of the model, mathematical analysis and numerical implementation
and validation is presented.

Namely, by formulating micromechanics-inspired modeling assumptions we con-
centrate on describing the dissipation mechanism – a refined form of this description
makes our model especially useful for complex loading paths. We then embed the
model into the so-called energetic framework – extended to our case – while taking
advantage of describing the dissipation mechanism through the so-called dissipation
distance. We prove existence of energetic solutions to our model by a backward Eu-
ler scheme. This is then implemented into a finite element software and numerical
simulations compared with experiments are also presented.

1 Introduction

Shape memory alloys (SMA) are metallic materials exhibiting remarkable properties like
being able to sustain and recover large strains or to “remember” the initial configura-
tion and return to it with temperature change. These properties arise from a reversible
rearrangement of the crystal lattice associated with the so-called martensitic phase trans-
formation. This is a transition from the (typically cubic) parent phase, referred to as
austenite, to the product phase, called martensite and having a less symmetric crystal
lattice. The transformation can be induced by thermal and mechanical loads as wells as
by a combination of these.

The martensitic phase is then characterized by an internal microstructure of different
strain states corresponding to different variants of martensite. This microstructure may
rearrange depending on the current loading conditions; this will be referred to as reorien-
tation hereinafter. It is this reorientation that is at the heart of the unique response of
SMA (cf. e.g. [1]).

Clearly, the specific thermomechanical properties of SMA make them attractive from
the point of view of application. Many products made out of SMA polycrystals are already
being used or developed: in medicine, in automotive industry, in textile industry, etc.
[2, 3, 4].

Due to the multiscale character of SMA and due to different objectives in modeling,
the variety of models that have been proposed in literature is very large ranging from
atomistic to macroscopical, from purely static to fully (thermomechanically) evolutionary
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ones, from those which focus only on particular phenomena to more general ones (which
may, however, disregard some peculiarities); cf. e.g. [5, 6, 7, 8] for surveys.

From the point of view of applications, however, macroscopic, phenomenological mod-
els for polycrystalline SMA form a powerful tool due to their easy implementation, less
time-consuming calculations and the possibility to be adjusted for the particular ma-
terial easily. Hence, a large number of such models has been proposed to date, e.g.
[9, 10, 11, 12, 13, 14, 15, 16].

Performance of several of them was compared within a unique activity called “Round-
robin SMA modeling” when experimentally measured behavior of a NiTi wire subjected
to complex thermomechanical loading conditions has been compared to predictions of the
individual models; see [17] for details. Assessment of the results revealed that especially
in the case when multiple deformation mechanisms were coming into play, i.e. in general
(non-proportional) thermomechanical loadings, the performance of the currently available
models is still not completely satisfactory. Note that the chosen material, a NiTi alloy, is
of particular importance since it is the commercially most successful SMA.

The difficulty in modeling the response due to non-proportional loadings stems from
an interactions of multiple deformation modes (elasticity, two-stage phase transformation,
reorientation) coming into play and the response becomes very sensitive to changes in
loading conditions [18].

In this work, we derive a macroscopic, phenomenological model that is based on a
simple modeling idea on the interaction of (some of) these processes. This allows us,
in particular, to describe the rate-independent1 dissipation mechanism related to (simul-
taneous) phase transformation and reorientation of martensite. Further, we embed the
model into the energetic framework for rate-independent processes to prove existence of
solutions and to propose a suitable numerical approximation. This is then implemented
for verification and prediction.

Therefore, this paper includes a presentation of the “full modeling sequence”, represent-
ing an interplay and synergy of mechanics, applied mathematical analysis and numerics,
consisting of the following main steps:

1. Formulation of simplifying modeling assumptions based on experimental results : Based
on a number of experiments available on polycrystalline NiTi samples and motivated
by microscopic behavior of SMA on the level of the single crystal, we propose simpli-
fying modeling assumptions that form the heart of the proposed model within this
work. The microscopic motivation is especially important to us when we propose that
a “zero-macroscopic-strain” type of martensite forms at the martensite-austenite in-
terface. Microscopically this notion reminds of twins (laminates) well know from
single crystal studies. Let us stress that we are aware that the situation in the
polycrystal is more complex and this assumption is very simplifying and might not
even be always satisfied. Nevertheless, the assumption is simple enough to allow us
to formulate a well-performing model and still transfers some of the essence of the
martensitic transition at the microscopic level to the macroscopic one.

2. Formulation of a thermodynamically consistent model : Following our modeling as-
sumptions we formulate our model in the framework of generalized standard solids
(GSM). In contrast to the original works due to [21], we, however, work with the
so-called dissipation distance (cf. [22]) instead of the dissipation potential.

1In the range of mechanical loading frequencies where assumption of isothermality is satisfied, which
will be the regime in which we work here, SMA behave in a rate-independent manner [19, 20].
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3. Mathematical analysis of the model : We embed our model into the so-called ener-
getic framework due to [23] which allows us to prove existence of solutions to the
model by a constructive method that simultaneously provides a conceptual numeri-
cal algorithm. Unlike in the previous works concerning the energetic framework, we
have to cope here with a dissipation distance dependent on temperature; we, hence,
extend the framework also to this case.

4. Numerical implementation: Based on the mathematical analysis, we develop a suit-
able numerical approximation of the model, which is used for implementation into
the finite element software Abaqus.

5. Validation of the model by comparison of simulations with experiments: Implemen-
tation of the model is employed in simulations of a superelastic helical spring loaded
in tension. We confirm plausibility of the model by comparing numerical results
with experiments on a real spring. Let us note that information from such a numer-
ical analysis helped to shed light on the problem of fatigue lifetime of SMA braided
stents in [24].

Although most published SMA models concentrate on only some of the aforementioned
steps, we present the full modeling sequence to assure that the models satisfies the re-
quirements of thermodynamical consistency and mathematical rigor as well as quantitative
prediction of experimental results within a good accuracy.

Let us also note that although we believe that especially the microscopically-motivated
modeling ansatz is more general, we adapt the model here to NiTi samples similar to those
used in the Roundrobin activity. Therefore, other troublesome phenomena specific to these
samples, namely the two-step transformation through intermediate R-phase and material
anisotropy, are also incorporated into the model by the approach proposed in [25].

The article is organized as follows. In section 2, we will briefly introduce the internal
variables, derive the specific form of the dissipation mechanism and construct the consti-
tutive model. In section 3, we will express the general problem of a quasistatic mechanical
loading of a NiTi-based SMA body with prescribed temperature evolution as a mathemat-
ical time-evolutionary problem and establish properties of its solutions utilizing an elegant
method, namely the notion of energetic solutions, recently developed for rate-independent
processes. In section 4, we will briefly summarize the numerical implementation and
demonstrate the predictive capabilities of the model.

2 Model Derivation

For model formulation, we adopt the formalism of so-called generalized standard models
(also called generalized standard materials) (GSM) developed by [21]; so, we have to specify
two functions (potentials) to construct a constitutive model. The first one is the energy
function, f , expressing the energy stored in the material, the other one is the dissipation
function, d, describing the energy transformed into heat by the material during the loading
process.

However, ideas presented further on in this paper can be advantageously expressed in
the form of so-called dissipation distance, δ, due to [23, 26]. This dissipation distance gives
the minimal possible dissipation when the system transits between two arbitrary states
αA and αB; i.e.

δ(αA,αB) := inf
{∫

αA→αB

d(α, α̇) dΓ; over all smooth paths from αA to αB

}

(1)
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Moreover, if the system transits from αA and αB in an infinitesimally short time-increment
the dissipation distance approximately gives the total dissipated energy on transition be-
tween the two states (similar concepts have also been used in e.g. [27, 28]).

Remark 2.1 (From dissipation distance to dissipation function). Clearly, obtaining the
dissipation distance in a closed form via formula (1) can be a very hard task. Nevertheless,
as in this paper, it can be advantageous to derive (a candidate) dissipation distance by
observing a transition between two states in a very short time increment. However, one
may ask which requirements such a candidate has to satisfy in order to guarantee that it
can be derived from dissipation potential via (1).

It is easily seen that necessary requirements for this to hold true are that δ(αA,αB) ≥ 0
for all admissible states of the system (as the dissipation function is non-negative) and
that δ satisfies the so-called triangle inequality

δ(αA,αB) ≤ δ(αA,αC) + δ(αC ,αB)

for all admissible states of the system αA, αB, αC . As the dissipation potential has to
be convex in the second variable for thermodynamic consistency, we also need to demand
that

δ(αA,αB) is convex in the second variable.

Moreover, if we knew that δ was obtained from some dissipation function through (1) the
corresponding dissipation function could be found through

d(α, α̇) = lim
ǫ→0+

1

ǫ
δ(α,α+ ǫα̇), (2)

respectively (see [22] for details). However, to the authors’ knowledge, it is not known
whether these requirements are truly sufficient. Yet, working with a dissipation distance
satisfying these requirements (together with some coercivity) allows us to work within
a thermodynamically and mathematically consistent framework ; so, we will impose only
these in what follows without verifying whether the dissipation distance really stems from
a dissipation function.

Within this section, we first introduce internal variables of the model. Then, we
present the concept of transformation favourable martensite, which is central for ensuing
derivation of the proposed dissipation distance. Finally, we briefly describe the form of
the free energy.

2.1 Internal variables

As the primary state variables, we choose the total strain tensor, ε, and temperature, T .
Following a common approach in GSM [29] that has also been widely used in macroscopic
SMA modeling, cf. [12, 14, 30], we introduce two internal variables for description of
the state of material. The first, scalar one is the volume fraction of martensite, ξ ∈
[0, 1]. The other one is a tensor variable, εin, coming from the conventional small strain
decomposition:

ε
in = ε− ε

el, (3)

where ε
el represents the common thermoelastic strain tensor. Hence, ε

in is the only
macroscopic variable used for storing information about microscopic internal structure of
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martensite.2 It shall be noted that we do not consider other inelastic strain contributions
as plasticity, retained martensite accumulation, etc. since they are beyond the scope of
the presented model.

Remark 2.2. One could formally decompose inelastic strain into the following product:
ε
in = ξεtr, where εtr represents a “homogenized” mean transformation strain of martensite

and was used as a primary variable (together with ξ) in e.g. [12, 14]. However, as it will
turn out later, the choice of the pair ξ, εin is suitable for derivations in Subsection 2.2 and
advantageous for mathematical treatment in Section 3.

Since the relative volume change associated with martensitic transformation is very
small [33], it is (similarly as in works [10, 12, 14]) neglected. In addition, crystallographic
considerations show [34] that there exists a maximum value of strain that is attainable
due to phase transformation; so, the inelastic strain is considered to lie in a bounded
convex set. Moreover, the area of this set has to shrink linearly if the volume fraction of
martensite shrinks.3 Thus, we further restrict εin as follows:

ε
in ∈

{
x ∈ R

3×3 : x is symmetric, tr(x) = 0, 〈x〉 ≤ ξ
}
, (4)

where tr(x) denotes the trace of a tensor x and 〈·〉 : R3×3 → R
+ is a suitable positively

1-homogeneous convex function; by a particular form of this function, tension-compression
asymmetry and anisotropic material behavior is captured in the model.

As the presented model is adapted to NiTi samples, it is important to capture also
the effect of another martensitic-type transformation specific to this alloy: the R-phase
transformation [18]. Here, we concentrate only on two important phenomena associated
with this transformation: namely, the dramatic change of elastic behavior and the distinct
entropy change. To this end, we introduce the volume fraction of R-phase, η ∈ [0, 1],
as an additional internal variable4; then, since an arbitrary mixture of the three phases
(austenite, R-phase, martensite) can be found in the material, the set of natural constraints
on ξ, η reads as:

0 ≤ η ≤ 1− ξ ≤ 1. (5)

2.2 Dissipation

During general thermal and mechanical loading of SMA, mutual interaction between two
important dissipative processes, namely phase transformation and reorientation, occurs.
To effectively capture this in the model we first formulate a set of assumptions, (A1)-
(A7), which actually build up the presented model. The first three of them are based on a
simplified modeling notion of evolution of the internal structure of martensite during the
phase transformation. This notion is inspired by microstructural observations of SMA on
the single-crystalline level while formulation of the other assumptions is rather influenced
by macroscopic experimental findings. The assumptions are then used to propose a suitable
dissipation distance.

2This is in contrast to common treatment in micromechanics-based models, where such an information
is often stored in a vector of volume fractions and/or transformation strains of all microstructural variants,
e.g. [31, 32].

3As the aforementioned crystallographic considerations force indeed rather the transformation strain to
be uniformly bounded, the upper bound on magnitude of the mean transformation strain must be, with
respect to the decomposition in Remark 2.2, multiplied by ξ to obtain the upper bound on ε

in.
4Our approach neglects the transformation strain related to transformation between austenite and

R-phase. Justification of such a substantial simplification is further discussed in [25].
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Note that we concentrate mostly on the dissipation mechanism since, as far as the free
energy is concerned, most available macroscopic SMA models consider similar dominant
energy contributions [5]. The dissipation mechanism is much less explored, though, and
so we concentrate on describing implications of the modeling ideas (A1)-(A7) to it.

Remark 2.3 (Neglecting dissipation due to R-phase transformation). The transformation
between austenite and R-phase is also of the martensitic type [35]; however, we apply the
following simplifications. Since the phase transformation between austenite and R-phase
exhibits a very narrow hysteresis in experimental studies [36], we neglect the associated
dissipation. Accordingly, we suppose that the same amount of energy is dissipated when
austenite transforms to martensite through R-phase as when it transforms directly.5 This
could be justified by a substantially smaller change in crystal lattice associated with the
austenite-to-R-phase transformation than for the austenite-to-martensite one [35].

Let us stress, at this point, that our derivation is local in the sense that our consider-
ations apply to any single arbitrary material point.

2.2.1 Assumptions of a two-step martensitic transformation

During transformation from austenite to martensite a specific form of structure of marten-
site compatible within the structure of austenite is formed [1]. Thus, requirements of
crystallographic coherence between the parent phase and the product phase impose some
conditions on the twinned structure of the formed martensite and application of an ex-
ternal load may lead to a further (usually complex) evolution of this structure [37, 38].
Extending this observation for any material point of the polycrystalline sample, we for-
mulate the first assumption as follows:

(A1) Austenite transforms to martensite always through formation of a particular marten-
sitic structure. This structure will be called transformation favorable martensite
(TFM) hereinafter and it is characterized by zero net macroscopic strain at the mo-
ment of creation. Immediate subsequent reorientation of TFM is possible.

Let us stress that formation of TMF is presumed not only in purely temperature-induced
transformation, but also in every transformation from austenite to martensite induced by
any combination of stress and temperature changes.

In [37, 39] it was observed that compatible interfacial structure forms and develops
when martensite, regardless whether twinned or detwinned, transforms back to austenite.
Motivated by such observations, the idea of TFM is now extended to the reverse trans-
formation, too; i.e., we suppose that TFM is always present also during disappearance of
martensite:

(A2) A necessary condition for initialisation of a reverse transformation in any amount
of martensite is formation of TFM within it.

The formulation emphasizes that if the actual martensite is not the TFM, then the struc-
ture of the disappearing martensite is adjusted first to TFM; only then the reverse trans-
formation may proceed.

Due to the previous assumptions, we can assign two additive contributions to dissi-
pation during thermomechanical loading of SMAs. The first one is connected with phase
transformation between austenite and TFM and we shall call it transformation part of

5The same assumptions has recently been used in the micromechanical model by [32].
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dissipation distance, δtr, in the following. The second contribution is connected to struc-
ture evolution of martensite and it is called reorientation part of dissipation distance, δreo.
Thus, we arrive at a quite natural assumption:

(A3) The contributions to dissipation associated to formation/disappearence of TMF and
reorientation of martensite are additive.

Hence, δ = δtr + δreo.

Remark 2.4. Distinction between dissipation related to transformation and reorientation
can be found in several other recent SMA models as in those of [14] or [12]. In our model
it emerges inherently due to the notion expressed by (A1) and (A2).

Remark 2.5. Making profit from experimental observations, we attempted to identify
those characteristics of the phase transformation at the single crystalline level which are,
in our opinion, of key importance for description of dissipation at the polycrystalline
level. Of course, the real situation in polycrystals is much more complex than in single
crystals. Nevertheless, we believe that albeit simplified, our assumptions capture the
essential ingredient of the evolution of martensitic structure in polycrystals.

2.2.2 Derivation of the transformation part of dissipation

If austenite is cooled under stress-free conditions, martensite phase transformation starts
at a temperature denoted usually Ms and finishes at temperature Mf (i.e. Mf ≤ Ms).
Similarly, the reverse transformation occurs in a temperature range from As to Af under
stress-free conditions (i.e. As ≤ Af) forming together a hysteresis loop in a closed trans-
formation cycle. Such conditions correspond well to a situation where only energy related
to the formation of TFM is dissipated. Thus, the dissipation distance should depend, in
such a case, only in the volume fraction of martensite in the initial and finite state. Since
more energy is dissipated when a larger volume fraction of the material transforms and
due to the rate-independence we assume the following:

(A4) The transformation part of dissipation distance is proportional to the absolute value
of the difference between its initial and final volume fraction of martensite. The
positive proportionality factor may depend (linearly) on the volume fraction.

For simplicity, we assume that the dependence of the proportionality factor in (A4) on
the volume fraction is linear. This corresponds to the situation sketched in Fig. 1 and
the corresponding form reads, then, as (we again distinguish initial and terminal state by
subscripts A and B, respectively):

ξB ≥ ξA : δtr(ξA, ξB) = ∆sAM

[

(T0 −Ms) +
ξA + ξB

2
(Ms −Mf)

]

|ξB − ξA|, (6)

ξB < ξA : δtr(ξA, ξB) = ∆sAM

[

(Af − T0) +
ξA + ξB

2
(As −Af)

]

|ξB − ξA|. (7)

where ∆sAM and T0 adjust the transformation temperatures with respect to the particular
form of f , see (12).

Remark 2.6. Let us note that corresponding type of dissipation function was analytically
studied by [40] in model denoted “M2” in that work. Choice Ms = Mf < T0 and As =
Af > T0 leads to the situation denoted “M1” in that work and corresponds to the simplest
non-trivial dissipative mechanism.
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Figure 1: The evolution of volume fraction of martensite with temperature under stress-
free condition in case only the transformation dissipation is considered in the model.

Remark 2.7. One may ask whether the form of the proportionality factor as given in,
say, (6) is the only possible as given by thermodynamic limitations. This is not entirely
so; however, when assuming linearity in the volume fraction, several restrictions can be
derived only from these consideration. To illustrate some of them, take the most general
form of δtr which reads as

(
C +AξA +BξB

)
|ξB − ξA|, (8)

with some A, B, C. For definiteness, let us concentrate only the case when ξB ≥ ξA;
then, as the proportionality factor has to be positive, we deduce that C > 0. Moreover,
as the dissipation distance needs to be convex in the second variable, also B ≥ 0. As the
dissipation distance needs to fulfil the triangle inequality we obtain that A ≥ B; this can
be seen by taking ξB = 1, ξA = 0 and the intermediate step ξC = 1/2. So, in particular,
the proportionality factor could not depend, e.g. only on the last step. We also have that
A < B + C. To see, this take ξB = 1 and ξA = ǫ for some small ǫ small. Now as in this
case a smaller amount of martensite transforms than in the case when the starting state
was zero. So,

(
C +Aǫ+B)(1− ǫ) < B + C ⇒ (A− C −B)ǫ−Aǫ2 < 0

for all ǫ > 0, which can only be satisfied if the above condition holds. Even more conditions
could be derived when testing the triangle inequality jointly in the case when ξB ≥ ξA and
ξB < ξA.

Note that the constants chosen in (6)-(7) indeed satisfy all the above constrains.

Remark 2.8. The value of reference temperature T0 determines the ratio between energy
dissipated during forward and reverse transformation.

2.2.3 Derivation of the reorientation part of dissipation

Microstructure observations reveal that several types of structure rearrangement may be
involved in evolution of martensite due to applied stress [38, 41]. All such processes are re-
lated to existence of twin boundaries within the material and their movement contributes
to change of the inelastic strain of the specimen. In our model, description of complex
internal structure is simplified to one tensorial variable. Thus, we neglect possible depen-
dence of amount of dissipated energy on type of internal microstructure rearrangement
and make following simple assumption:
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(A5) If martensite is subject to reorientation, the corresponding dissipation distance is
proportional to the norm of the difference between its final and initial inelastic strain.

A proportionality coefficient in units of stress must appear in formula for the dissipation
distance so that the resulting dissipation distance keeps the physical dimension of energy.
It seems natural to relate this coefficient to stress needed for initialization of martensite
reorientation at temperatures below Ms. Since it is often observed [42, 43] that this
stress decreases with increasing temperature,6 we, finally, make an assumption on the
temperature dependence of dissipation related to reorientation as follows:

(A6) Dissipation accompanying reorientation processes is proportional to temperature.

We denote the proportionality coefficient σreo(T ).
Now, we are going to formulate the reorientation dissipation distance explicitly. When

austenite to martensite transformation occurs (i.e. ξB > ξA), we directly follow assump-
tions (A5) and (A6) and obtain

ξB > ξA : δreo(εinA , ξA, TB, ε
in
B , ξB) = σreo(TB)‖εinB − ε

in
A‖. (9)

An analogous consideration leads to extending the definition also for pure reorientation,
i.e. ξB = ξA.

However, the situation is less clear when some martensite disappears (i.e. ξA > ξB).
The disappearing martensite and remaining martensite shall be treated separately, since
they differ in the final state of inelastic strain. In line with assumption (A2), the disap-
pearing martensite forms TFM, which is characterized by zero inelastic strain. Yet, by
this assumption it is still not evident how much of the inelastic strain ε

in
A is lost by trans-

formation of the disappearing martensite to TFM. A rather sophisticated approach to this
issue based on substitution of internal variable ε

in by an internal function was proposed
in [44], where, however, only the one-dimensional situation is tackled which cannot be
straightforwardly adapted to the 3D case. So, we confine ourselves to the following simple
assumption:

(A7) The inelastic strain is distributed homogeneously within martensite.

Hence, the initial value of the inelastic strain corresponding to the disappearing martensite
is then proportional the ratio (ξA − ξB)/ξA. Considering the temperature dependence as
in (9), the dissipation distance reads

δreo1 (εinA , ξA, TB, ε
in
B , ξB) = σreo(TB)

∥
∥
ξA − ξB

ξA
ε
in
A − 0

∥
∥ = σreo(TB)

∥
∥
ε
in
A − ξB

ξA
ε
in
A

∥
∥.

Moreover, the remaining martensite, whose initial inelastic strain is then proportional to
the ratio ξB/ξA, can reorient, which adds the second term

δreo2 (εinA , ξA, TB, ε
in
B , ξB) = σreo(TB)

∥
∥
ε
in
B − ξB

ξA
ε
in
A

∥
∥. (10)

The sum δreo1 + δreo2 gives the the reorientation dissipation distance for martensite trans-
forming to austenite

ξB < ξA : δreo(εinA , ξA, TB, ε
in
B , ξB) = σreo(TB)

[
∥
∥
ξB
ξA

ε
in
A − ε

in
A

∥
∥+

∥
∥
ε
in
B − ξB

ξA
ε
in
A

∥
∥

]

. (11)

6This could be associated with increasing mobility of twin boundaries with increasing temperature.
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Remark 2.9. To the authors’ knowledge there is no systematic experimental study which
would provide deeper insight on situation discussed in the previous paragraph. Neverthe-
less, since the constitutive model is intended for a finite element method calculations, a
“homogeneity” approximation like (A7) is reasonable (cf. [12].)

2.3 Free energy

We consider the free energy consisting only of two dominant contributions, namely the
elastic and chemical energy, which are pivotal in SMAmodels, e.g. [10, 15, 45, 46]. The rule
of mixtures is employed to determine the specific free energy of the multiphase material
and the Reuss model for strain decomposition is adopted. We omit the details in this work
and refer the reader to [25], where the procedure yielding the Helmholtz free energy

f(T, ε, εtr, ξ, η) =
1

2
Ktr(ε)2 +G(ξ, η)‖dev(ε)− ε

in‖2

+ ∆sAM (T − T0)ξ +∆sAR(T − TR
0 (ξ, η))η

+ uA0 − sA0 T + cA
[

(T − T0)− T ln

(
T

T0

)]

. (12)

is described. Note that the superscripts A,R and M distinguish entities related to austenite,
R-phase and martensite, respectively. The constant K denotes the bulk modulus (con-
sidered independent on the phase composition), G the shear modulus, ∆s the difference
of specific entropy per unit volume. uA, sA and cA are the specific internal energy, en-
tropy and heat capacity of austenite at a reference temperature T0.

7 dev(x) denotes the
deviatoric part of a tensor x.

Although the transformation between austenite and R-phase is considered non-dissi-
pative, the form of the free energy allows to capture two important effects related that
transformation. First, due to considered different values of shear modulus of the phases,
the substantial change of the elastic behavior observed e.g. in [47] is covered. Second, the
term proportional to ∆sAR reflects the distinct change of entropy driving the transforma-
tion process. Moreover, to account for a possibly wide temperature range in which the
austenite-to-R-phase transformation takes place, we define TR

0 as

TR
0 (ξ, η) := Rs +

η

1− ξ

Rf −Rs

2
, (13)

where Rs and Rf denote the initial and final temperature of the transformation from
austenite to R-phase, i.e. Rs > Rf . See [25] for details.

To sum up the final form of free energy and dissipation distance (recall (A3)) reads as

7With respect to their physical meaning, we assume that all these constants are positive in Section 3.
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follows:

f(T, ε, εin, ξ, η) =
1

2
Ktr(ε)2 +G(ξ, η)‖dev(ε)− ε

in‖2

+ ∆sAM (T − T0)ξ +∆sAR(T − TR
0 (ξ, η))η

+ uA0 − sA0 T + cA
[

(T − T0)− T ln

(
T

T0

)]

, (14)

δ(T, εinA , ξA, ε
in
B , ξB) =







∆sAM
[

T0 −Ms +
ξA+ξB

2 (Ms −Mf)
]

|ξB − ξA|
+ σreo(TB)‖εinB − ε

in
A‖ if ξB ≥ ξA,

∆sAM
[

Af − T0 +
ξA+ξB

2 (As −Af)
]

|ξB − ξA|
+ σreo(TB)

[

‖ ξB
ξA

ε
in
A − ε

in
A‖+ ‖εinB − ξB

ξA
ε
in
A‖

]

if ξB < ξA.

(15)

Remark 2.10. By a straightforward calculation (cf. [48]) it can be shown that dissipa-
tion distance proposed here satisfies the necessary conditions from Remark 2.1; namely,
it is non-negative, convex in the second variable and, importantly, satisfies the triangle
inequality.

Remark 2.11. As outlined in Remark 2.1, if the dissipation function were derived from
some dissipation potential, this had to be determined by (2). It is worth mentioning that
if this (candidate) dissipation function is derived, it corresponds to the one heuristically
obtained in [25] by careful analysis of experimental phase diagrams. Utilizing this dissipa-
tion function, we could formulate the standard governing equations/inclusions within the
GSM framework to obtain time-evolutionary problem of quasistatic mechanical loading of
a NiTi SMA body with prescribed temperature evolution, see [25]. It is also worth men-
tioning, that, even though we shall not formulate these equations/inclusions and rather
give an energetic formulation of the problem, after performing time-discretization the same
problem as in [25] is obtained.

Remark 2.12. It is apparent by comparing formulas in (15) that the dissipation distance
is continuous for ξB = ξA.

Remark 2.13. In accord with experimental observations, we assume that described pro-
cesses are strongly dissipative, i.e. αA 6= αB ⇒ δ(αA,αB) 6= 0. With respect to this, in
our case it is sufficient to put

Ms < T0 < As and σreo(T ) > 0 (16)

for any T considered.

3 Mathematical Analysis

In this section, we examine the mathematical properties of the proposed model and embed
it into the energetic framework due to Mielke and collaborators (cf. e.g. the works
[26, 49, 50, 51]) which we generalize for dissipation distances dependent on time through
the external loading by temperature. In particular, we also propose a conceptual numerical
scheme that is further used in Section 4 and prove convergence to so-called energetic
solutions. This analysis shows that our model is well-behaving in the sense that we can
prove that solutions to it exist in a natural sense;8 moreover, the numerical approximation

8Importance of such an analysis for SMA models was highlighted in [52] for instance.
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is, due to the presented analysis, expected to be well-behaving, for example to be mesh
independent.

Let us start by presenting a global formulation of our model.

3.1 Global formulation

The constitutively defined Helmholtz energy and dissipation distance (14)–(15) are the
starting point for the energetic formulation, as outlined in e.g. [26, 51]. However, instead
of the Helmholtz free energy, we shall rather include the force terms into the energy and
work in terms of the global Gibbs free energy E and the global dissipation distance D.

In the following, we denote by Ω the reference configuration (usually the stress-free
austenitic state of the specimen) and ∂Ω denotes its boundary. We assume the following
splitting ∂Ω = ΓD ∪ ΓN ∪N with ΓD, ΓN open, disjoint and the two-dimensional measure
of N being zero. On the part ΓN the surface force Fsurf is acting on the specimen while
on the part ΓD Dirichlet boundary conditions for the displacement are prescribed. For
simplicity, we restrict ourselves here to zero Dirichlet boundary conditions ; i.e., u(x) = 0
on ΓD. Let us note that, by shifting, considering any other constant-in-time Dirichlet
boundary condition is immediate; sufficiently smooth time-dependent Dirichlet boundary
conditions could be, again by shifting, incorporated , too – this would, however, make the
analysis presented bellow more technical.

To shorten the notation, let us introduce a vector of dissipative variables

α := (εin, ξ).

With this notation, we introduce the global, i.e. integrated over the reference configuration,
dissipation distance (recall (15)):

D(t, α, α̃) := Dtr(t, α, α̃) +Dreo(t, α, α̃) =

∫

Ω
δtr(t, α, α̃) dx+

∫

Ω
δreo(t, α, α̃) dx. (17)

Remark 3.1. Due to the triangle inequality mentioned in Remark 2.10, the global dissi-
pation satisfies that

D(t, αA, αC) ≤ D(t, αA, αB) +D(t, αB, αC), (18)

for any fixed time t. Moreover, the following coercivity property

D(t, αA, αB) ≥ c∗‖αA − αB‖L1(Ω). (19)

with some c∗ > 0 reflects Remark 2.13.

We have the following form of the global Gibbs free energy

E(t, u, α, η) :=
∫

Ω
f(t, ε(u), α, η) + ν‖∇α(t)‖2 − Fvol(t) · u dx−

∫

ΓN

Fsurf(t) · u dS, (20)

where Fvol is the prescribed volume force acting on the specimen and ν > 0 is an arbitrary
(small) constant. The term ν‖∇α(t)‖2 is then a regularization term as it penalizes fast
spatial changes of the internal variables. This term can be linked to capillarity effects [53];
however, we include it in order to make the analysis tractable – it could be avoided in
some special cases, see e.g. [51], which we do not consider here. Note that, apart from
the regularization term, (20) represents the standard global form of the Gibbs free energy
corresponding to the Helmholtz free energy f(t, ε(u), α, η).

12



In accordance with the concept of generalized standard materials (cf. Section 2), the
two functionals E , D determine the rate-independent evolution of the state and internal
variables of the specimen; however the values of these variables are limited by natural
constrains expressed in (4) and (5). Thus, we shall define the set of admissible states Q
through

Q :=
{
(u, α, η) ∈ U × V × Z : η(x) ≤ 1− ξ(x) for a.a. x ∈ Ω with α = (εin, ξ)

}
(21)

where

U := {u ∈ W 1,2(Ω,R3) : u = 0 on ΓD} (22)

V := {(εin, ξ) ∈ W 1,2(Ω,R3×3)×W 1,2(Ω) : ε
in is a traceless, symmetric matrix,

〈εin(x)〉 ≤ ξ(x) for a.a.x ∈ Ω and 0 ≤ ξ(x) ≤ 1 for a.a. x ∈ Ω} (23)

Z := {η ∈ L∞(Ω,R)) : 0 ≤ η(x) ≤ 1 for a.a. x ∈ Ω}. (24)

Note that, we also included the Dirichlet boundary condition into the space U .
The triple (Q, E ,D) then defines a rate-independent system the solutions to which

describe, in our modeling approach, the evolution of a polycrystalline SMA-specimen.
Finally, let us introduce the overall dissipated energy over the path (u, α, η) : [0, T ] 7→

Q (when actually only the path in α’s plays a role since those are the dissipative variables):

DissD(α; [0, T ]) := Disstr(α; [0, T ]) + Dissreo(α; [0, T ]). (25)

First, we define that the overall energy loss due to transformation can be computed as
follows:

Disstr(α; [0, T ]) := sup
{ N∑

i=1

Dtr(α(ti−1), α(ti)) : a.p.p. 0 = t0 ≤ t1 ≤ . . . ≤ tN = T
}

,

(26)

where we abbreviated “over all possible partitions” by “a.p.p.”. This definition follows
the works [26, 51] and is motivated by the idea that if the dissipative variables change
smoothly then this formula integrates up all the losses due to this process (cf. Remark
3.2). However, it can incorporate also more general situations; for example, it can be easily
seen that if the values of the internal dissipative variables jump in finitely many points of
the considered time-interval, then (26) counts exactly the energy dissipated during these
jumps.

As far as the reorientation losses are concerned, we know that the reorientation part of
the dissipation depends on the temperature which, roughly speaking, represents a “weight”
on the energy dissipated due to the change on the dissipative variables. To capture this
phenomenon we define

Dissreo(α, [0, t]) :=

∫ t

0
σreo(T (s)) dµα(s). (27)

Here we denoted by µα the Radon measure defined on [0, T ] by prescribing its values on
every closed set S = [s, z] ⊂ [0, T ], as

µα(S) := sup

{
N∑

i=1

Dreo
(α(ti−1), α(ti)) : a.p.p. s = t0 ≤ t1 ≤ . . . ≤ tN = z

}

, (28)
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and thus for any Borel subset A ⊂ [0, T ]

µα(A) = sup

{
∑

i

µj(Vi) :
⋃

i

Vi ⊂ A with Vi closed intervals from [0, T ]

}

, (29)

where

Dreo
(α(ti−1), α(ti)) :=

∫

Ω
δ
reo

(α(ti−1), α(ti)) dx

:=

∫

Ω
δreo(t, α(ti−1), α(ti)) dx with σreo(T (t)) ≡ 1; (30)

hence, the measure itself does not depend on the prescribed function σreo(T (t)).
The principle behind this definition is similar as above; the usage of the measure allows

us to incorporate the dependence of the dissipated energy on the temperature. Again, it
is instructive to observe an evolution of the internal variable α that exhibits only a finite
number of jumps. In such a case (27) together with (28) counts exactly the dissipated
energy at the jumps weighted by the actual temperature at the jumps.

Remark 3.2. It follows from the theory of functions of bounded variation (see e.g. [54])
that the definition of the total dissipated energy over the prescribed path is designed in
such a way that, for sufficiently smooth processes,

DissD(α; [0, T ]) =

∫
T

0

∫

Ω
d(t, α(t), α̇(t)) dx dt,

if δ is such that it is associated to the dissipation function d, see Remark 2.1.

Remark 3.3 (Convexity of the free energy). The free energy f(t, ε(v(t)), α(t), η(t)) defined
through (14) can be shown to be convex by calculating the Hessian of f which turns out
to be positive semi-definite if the constrains 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 − ξ hold. Actually,
one relies here on the fact that the functions h(x, y) = x2

y
and h̃(x, y) = x2

1−y
are convex,

provided 0 ≤ y ≤ 1.
Let us note that this property is available because we work with the inelastic strain

and not the transformation strain mentioned in Remark 2.2.

3.2 Definition of energetic solutions, data qualifications

Following [26, 49, 50, 51], we define:

Definition 3.4 (Energetic solution). Let E ,D be given by definitions (17) and (20) and let
(u0, α0, η0) ∈ Q. Then triplet (u(t), α(t), η(t)) : [0, T ] 7→ Q is called an energetic solution
to the rate-independent system (Q, E ,D) if ∂tE(t, u(t)) ∈ L1([0, T ]) and if the following
conditions are satisfied:

• Stability condition:

E(t, u(t), α(t), η(t)) ≤ E(t, ũ, α̃, η̃) +D(t, α(t), α̃) ∀ (ũ, α̃, η̃) ∈ Q (31)

• Energy balance:

E(t, u(t), α(t), η(t)) + DissD(α, [0, T ])=E(0, u(0), α(0), η(0))+
∫

T

0
∂tE(s, u(s)) ds.

(32)
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• Initial condition: (u(0), α(0), η(0)) = (u0, α0, η0) a.e. in Ω.

Remark 3.5 (Justification of the definition from a mechanical point of view). In [26] the
definition of energetic solutions has been linked to the so-called realizability principle which
postulates that whenever a process is admissible from the point of view of thermodynamics
it will happen immediately. This principle then justifies the stability condition which
essentially states that a state can be only stable if a process leading to a lower energy
state is thermodynamically not admissible. It shall be noted that this approach does
not lead to the same results as other ones, e.g. vanishing viscosity limits [55, 56, 57].
Nevertheless, we use it since it adapts perfectly to our modeling setup.

Remark 3.6 (Relation to classical variational inequalities in the framework of general-
ized standard materials). It has been proved in [58] that if specific convexity/continuity
conditions on E are satisfied and also conditions on the dissipation function correspond-
ing to the dissipation distance D are posed, then there exists a unique energetic solution
which moreover satisfies the weak formulation of the classical doubly non-linear inclusion
appearing in the framework of generalized standard solids (see e.g. [59]). However, since
the convexity condition demanded in [58] is stricter than strict convexity (which is not
satisfied in our case) the results are not applicable to our model. One could try to improve
the situation by introducing regularizing terms which, in some cases, can be even linked
to physically relevant phenomena like hardening (see [25]); but this is beyond the scope
of the present discussion.

Finally in this subsection, we summarize the needed data qualifications.

(D1) Domain of the specimen: Ω is a regular, bounded, Lipschitz domain; ΓD ⊂ ∂Ω is
such that its two-dimensional measure is positive.

(D2) Domain of the inelastic strain: 〈·〉 is convex, positively 1-homogenous and it holds
〈εin〉 = 0 ⇒ ε

in = 0,

(D3) Forces: Let Fvol ∈ C1([0, T ], L2(Ω;R3)) and Fsurf ∈ C1([0, T ], L2(ΓN;R
3)).

(D4) Prescribed temperature: Let T ∈ C1([0, T ]).

Remark 3.7. Since we are considering sufficiently small specimen (e.g. wires) heated
uniformly on the boundary, we can assume that the temperature within the specimen is
constant and fully determined by the reservoir into which the specimen is placed; hence
(similarly as in [60, 61]) we can impose the regularity (D4). Let us note, however, that in
case of a larger specimen when the heat equation is included into the governing system,
such a regularity is usually not obtained (cf. e.g. [62, 63]).

3.3 Existence theory

In this subsection, we follow the works [23, 51] and also [60, 61] to prove existence of
energetic solutions to the rate-independent system (Q, E ,D). Let us just note that in
addition to these works (and in particular also to the latter ones), we cope here with
a dissipation distance dependent on temperature which calls for a modification of the
available proofs. This is outlined, more specifically, in Step 6 and Step 7 of the proof of
Theorem 3.8 below.

Theorem 3.8 (Existence of an energetic solution). Let E ,D be defined by (20) and (17),
let (D1)-(D4) hold true and let initial conditions (u0, α0, η0) ∈ Q satisfy the stability
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condition (31). Then there exists an energetic solution of the rate-independent system
(Q, E ,D).

Sketch of proof. For lucidity, we divide the proof into 7 steps. Let us stress, at this point,
that hereinafter C will denote a positive generic constant that may vary from expression
to expression.

Step 1 (Time-incremental problem):
Let 0 = t0 ≤ t1 ≤ . . . tN(τ) = T be a partition of the time-interval [0, T ] such that
maxi(ti+1 − ti) ≤ τ . In the spirit of [23, 51] we design a time-discretization of (31)–(32)
via the backward Euler method. To be more specific, we call the triple (ukτ , α

k
τ , η

k
τ ) ∈

Q a discrete energetic solution to rate-independent system (Q, E ,D) at time-level k =
1, . . . , N(τ) if it solves

Minimize E(tk, u, α, η) +D(tk, α
k−1
τ , α)

subject to (u, α, η) ∈ Q (TIP)

with (u0τ , α
0
τ , η

0
τ ) = (u0, α0, η0) ∈ Q defined through the initial condition.

The existence of solutions to (TIP) is shown by the direct method (cf. [64]); to this
end we mostly rely on the fact that the cost function in (TIP) is convex (cf. Remark 3.3)
and the minimization is performed on a closed convex set. In addition, the cost function
in (TIP) is coercive in the sense that E(tk, u, α, η) ≥ C(‖u‖W 1,2(Ω;R3)+ ‖α‖W 1,2(Ω;R3×3×R))
whenever (u, α, η) ∈ Q.

As to the coercivity, we use the regularization terms and the uniform bounds on α
imposed through the set V to get the coercivity in α. To show the coercivity in u, we
exploit the elastic part of the Helmholtz free energy combined with Korn’s inequality and
assumption (D4) that allows us to estimate the force terms.

Thus, we take an infimizing sequence of the cost functional in (TIP) ([uk]j , [α
k]j , [η

k]j) ∈
Q and, due to the coercivity, we can extract a weakly* converging subsequence inW 1,2(Ω;R3)×
W 1,2(Ω;R × R

3) × L∞(Ω) (not relabelled); the weak* limit is denoted (uk, αk, ηk) ∈
W 1,2(Ω;R3) ×W 1,2(Ω;R × R

3) × L∞(Ω). Because closed convex sets are weakly* closed
we actually have that (uk, αk, ηk) ∈ Q. Finally, due to convexity of the the cost function,
(uk, αk, ηk) is indeed a solution to (TIP).

Step 2 (Discrete stability condition and two-sided energy inequality):
Exactly the same way as in [51, 53] (see also [48] for more details), we can show that the
discrete energetic solutions to the rate-independent system (Q, E ,D) satisfy the discrete
stability condition

E(tk, uk, αk, ηk) ≤ E(tk, ũ, α̃, η̃) +D(tk, αk, α̃) ∀ (ũ, α̃, η̃) ∈ Q (33)

and the energy inequalities

∫ tk

tk−1

∂Et(s, uk(s)) ds ≤ E(tk, uk, αk, ηk) +D(tk, αk−1, αk)− E(tk−1, uk−1, αk−1, ηk−1)

≤
∫ tk

tk−1

∂tE(s, uk−1(s)) ds. (34)

Let us stress, however, that in order to derive (34) as in [51, 53], we need to exploit
that the dissipation distance satisfies the triangle inequality (18) as noted in Remark 3.1.
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Step 3 (Defining interpolants and a-priori estimates):
Based on solutions of (TIP) established in Step 1, we introduce their piece-wise constant
interpolants through

[uτ (t), ατ (t), ητ (t)] := [ukτ , α
k
τ , η

k
τ ] if t ∈ [tk, tk+1), k = 0, . . . , N − 1 and

[uτ (T ), ατ (T ), ητ (T )] := [uNτ , αN
τ , ηNτ ] (35)

It follows from (34) that the interpolants satisfy the following bounds:

‖uτ‖L∞([0,T ];W 1,2(Ω;R3)) ≤ C, (36)

‖ητ‖L∞([0,T ],L∞(Ω)) ≤ 1, (37)

‖ατ‖L∞([0,T ],W 1,2(Ω;R3×3×R)) ≤ C, (38)

VarL1(Ω;R3×3×R)(ατ ; [0, T ]) ≤ C, (39)

where the variation is defined through

VarL1(Ω;R3×3×R)(ατ ; [0, T ]) := sup
{ N∑

i=1

‖α(ti−1)− α(ti)‖L1(Ω;R3×3×R) : (40)

a.p.p. 0 = t0 ≤ t1 ≤ . . . ≤ tN = t
}

. (41)

Indeed, by summing the upper inequality up to some arbitrary l ∈ 1, . . . , N(τ) in (34), we
can estimate

E(tl, ulτ , αl
τ , η

l
τ )+

l∑

i=1

D(ti, ατ (ti−1), ατ (ti)) ≤ E(0, u0, α0, η0)+

∫ tl

0
|∂tE(s, uτ (s))| ds. (42)

Then, (36) and (38) are obtained from the coercivity of E , which was already pointed out in
Step 1, combined with discrete Gronwall’s lemma and assumption (D3) – this assumption
is exploited to estimate

∫ tl
0 |∂tE(s, uτ (s))| ds by a combination of Hölder’s and Young’s

inequalities. Having (36) already at our disposal, (D3) readily gives

∫
T

0
|∂tE(s, uτ (s))| ds ≤ C. (43)

The estimate (37) is induced by the fact that ητ (t) ∈ Z for all t ∈ [0, T ]. As far as (39),
we obtain it from (42) when putting l = N(τ):

VarL1(Ω;R3×3×R)(ατ ; [0, T ]) =

N(τ)
∑

k=1

‖αk
τ − αk−1

τ ‖L1(Ω;R3×3×R)

≤
N(τ)
∑

k=1

1

c∗
(
D(tk, α

k−1
τ , αk

τ ) + E(T , uτ (T ), ατ (T ), ητ (T ))
)

≤ 1

c∗

(

E(0, u0, α0, η0) +

∫
T

0
|∂tE(s, uτ (s))| ds

)

≤ C.

For more details on this step, the reader is referred to, e.g., [48].

Step 4 (Selection of subsequences):
Let us now find a cluster point of the sequence (uτ , ατ , ητ ) for τ → 0 which we shall, in the
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following, show to be an energetic solution to the rate-independent system (Q, E ,D). By an
application of a suitable version of Helly’s selection principle [see Theorem 1.126 and Re-
mark 1.127 in 65], [23], we deduce from (39) that there exists an α ∈ L∞([0, T ],W 1,2(Ω))∩
BV ([0, T ],L1(Ω)) and a subsequence of ατ ’s (not relabelled) so that

∀ t ∈ [0, T ] : ατ (t) ⇀ α(t) in W 1,2(Ω;R3×3 × R) ⇒ ατ (t) → α(t) in L2(Ω;R3×3 × R).
(44)

Further, we define θ(t) := lim supτ→0 ∂tE(t, uτ (t)); note that θ(t) is measurable on
[0, T ].

Let us fix t ∈ [0, T ] and let us define a time-dependent subsequence of τ ′s labelled
τk(t) such that θ(t) = limτk(t)→0 ∂tE(t, uτ (t)). With t still fixed, we choose, if necessary, a
further subsequence of τk(t) (not relabelled) such that

uτk(t) ⇀ u(t) for l → ∞ in W 1,2(Ω), (45)

ητk(t)
∗
⇀ η(t) for l → ∞ in L∞(Ω), (46)

owing to (36)-(38). Thus, by (D2) and the particular form of the Gibbs free energy (20),
θ(t) = ∂tE(t, u(t)) and so, by an application of the Fatou’s lemma,

lim sup
τ→0

∫
T

0
∂tE(s, uτ (s)) ds ≤

∫
T

0
θ(s) ds =

∫
T

0
∂tE(s, u(s)) ds (47)

Finally, we realize that due to the mentioned weak* closedness of convex closed sets,
(u(t), α(t), η(t)) ∈ Q for all t ∈ [0, T ].

Step 5 (Stability of the limit function):
Let us show that (u, α, η) ∈ Q found in the previous step satisfies (31). Due to the
convexity of the Helmholtz free energy f we have that E : R × Q 7→ R is weakly lower
semicontinuous; hence, for some t ∈ [0, T ] fixed, we have that

E(t, u, α, η) ≤ lim inf
τk(t)→0

E(tτk(t) , uτk(t) , ατk(t) , ητk(t))

≤ lim sup
τk(t)→0

(

E(tτk(t) ũ, α̃, η̃) +D(tτk(t) , ατk(t)(t), α̃)
)

(48)

with tτk(t) := inf{tl : t ≤ tl; l = 1, . . . , N(τk(t))} and for any (ũ, α̃, η̃) ∈ Q; we also
exploited the discrete stability (33).

On the right hand side, we use that E(t, ·, ·, ·) is continuous due to (D3) and (D4) and
limτk(t)→0D(τk(t), ατk(t)(t), α̃) = D(t, α(t), α̃). To see the latter, we employ the Nemytskĭı

continuity of D(·, α, ·) : L2(Ω;R3×3 × R) 7→ R (note that, thanks to (44), ατk(t) → α

strongly in L2(Ω;R3×3 × R)) and the continuity of D(t, ·, ·) : R 7→ R. While the second
property is a direct consequence of (D4), the Nemytskĭı continuity is guaranteed by the
linear growth of D(·, α, ·) (with respect to α) and the fact that δ(·, α, ·) is continuous.

Thus,

E(t, u, α, η) ≤ lim inf
τk(t)→0

E(tτk(t) , uτk(t) , ατk(t) , ητk(t))

≤ lim sup
τk(t)→0

(

E(tτk(t) , ũ, α̃, η̃) +D(τk(t), ατk(t)(t), α̃)
)

≤ E(t, ũ, α̃, η̃) +D(t, α(t), α̃)
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for any (ũ, α̃, η̃) ∈ Q, i.e. we verified (31). In particular, when taking (ũ, α̃, η̃) = (u, α, η)
in the above inequality, we also get that

E(t, u, α, η) = lim
τk(t)→0

E(tτk(t) , uτk(t) , ατk(t) , ητk(t)). (49)

Step 6 (Upper energy inequality):
In order to prove the upper energy inequality

E(T , u(T ), α(T ), η(T )) + DissD(α, [0, T ]) ≤ E(0, u(0), α(0), η(0)) +
∫

T

0
∂tE(s, u(s)) ds,

we first need to show the weak lower semicontinuity of DissD(α, [0, T ]) along the sequence
ατ selected in 4. We will establish it separately for the transformation and reorientation
part:

Disstr(α, [0, T ]) ≤ lim inf
τ→0

N(τ)
∑

k=1

Dtr(ατ (tk−1), ατ (tk)) (50)

and

Dissreo(α, [0, T ]) ≤ lim inf
τ→0

N(τ)
∑

k=1

Dreo(tk, ατ (tk−1), ατ (tk)). (51)

In fact, only the reorientation part needs our attention since, for any partition of the
interval [0, T ] 0 ≤ t1 ≤ t2 ≤ . . . ≤ tK = T , we have that Dtr(ατ (t

k−1), ατ (t
k)) →

Dtr(α(tk−1), α(tk)) whenever ατ ⇀ α in V; this already implies (50).
Concentrating thus on the reorientation part, we take again some partition of the

interval [0, T ] 0 ≤ t1 ≤ t2 ≤ . . . ≤ tK = T . Since ατ (t) → α(t) strongly in L2(Ω;R3×3×R)
for all t ∈ [0, T ] we have that ατ (t, x) → α(t, x) for a.a. x ∈ Ω and all t ∈ [0, T ] (at least
in terms of a not-relabelled subsequence). Because all ατ ’s are in V, we know that (for
the components of this particular ατ ) 〈εinτ (x)〉 ≤ ξτ (x). This property assures continuity
of δ

reo
in the sense δ

reo
(ατ (t

k−1, x), ατ (t
k, x)) → δ

reo
(α(tk−1, x), α(tk, x)) for a.a. x ∈ Ω.

Thus, δ
reo

(α(tk−1, x), α(tk, x)) is measurable and exploiting the growth of δ
reo

as well as
the Lebesgue dominated convergence theorem we get that

lim
τ→0

Dreo
(ατ (τ

k−1), ατ (τ
k)) = Dreo

(α(τk−1), α(τk))

which standardly yields that

µα([s, z]) ≤ lim inf
k→∞

µατ ([s, z]). (52)

for any subinterval [s, z] ⊂ [0, T ]; notice that µατ is defined through (28) with ατ in place
of α. Moreover, (52) can be extended to also to all Borel sets A in [0, T ] (in particular
also to half-open intervals) through (29); i.e.

µα(A) ≤ lim inf
k→∞

µατ (A). (53)

Since σreo(T (t)) is positive and continuous, we may approximate it by piece-wise con-
stant, positive functions on half-open intervals to get from (53) that

∫
T

0
σreo(T (t)) dµα(t) ≤ lim inf

k→∞

∫
T

0
σreo(T (t)) dµατ (t). (54)
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Indeed, in more detail, we take an equidistant partition 0 = t0 ≤ t1 ≤ . . . ≤ tn = T of the
interval [0, T ] with ti = t0 + ih for i ∈ {0, . . . , n} and h := T /n (note that this partition
does not need to coincide with any of the previously chosen ones) and define a sequence
of functions σreo

n (t) : [0, T ] → R as

σreo
n (t) := σreo(T (ti−1)) if t ∈ [ti−1, ti), i = 1, . . . , N and

σreo
n (tn) := σreo(T (T )) (55)

Due to (D4), we have that σreo
n (t) → σreo(T (t)) pointwise. Clearly, from (53),

∫
T

0
σreo
n (t) dµα(t) ≤ lim inf

k→∞

∫
T

0
σreo
n (t) dµατ (t);

(54) is then obtained by Lebegue’s dominated convergence theorem owing to (D4) provid-
ing a uniform bound on σreo

n (t) and (39).
Therefore, we can exploit (51) and the weak*-lower semicontinuity of the Gibbs free

energy as well as (34) (with l = N(τ)) to get

E(T ,u(T ), α(T ), η(T )) + Diss(α, [0, t])

≤ lim inf
τ→0

(

E(T , uτ (T ), ατ (T ), ητ (T ))+

N(τ)
∑

k=1

Dreo(tk, ατ (tk−1), ατ (tk))+Dtr(ατ (tk−1), ατ (tk))
)

≤ lim sup
τ→0

(

E(0, u0, α0, η0) +

∫
T

0
∂tE(s, uτ (s)) ds

)

≤ E(0, u0, α0, η0) +

∫
T

0
∂tE(s, u(s)) ds,

where the last inequality is due to (47).

Step 7 (Lower energy inequality):
Finally, we prove that

E(T , u(T ), α(T ), η(T )) + DissD(α, [0, T ]) ≥ E(0, u(0), α(0), η(0)) +
∫

T

0
∂tE(s, u(s)) ds;

actually, as was observed in e.g. [49], this is indeed a consequence of the stability condition
(31). To see this, let 0 = t0 ≤ t1 ≤ . . . ≤ tK = T , t ∈ [0, T ] be a sequence of some arbitrary
partitions of [0, T ] with ∆K := max{tj − tj−1 : j = 1, . . . ,K}.

Let us define the piece-wise constant interpolant σreo
K (T (t)) of σreo as follows:

σreo
K (T (t)) := σreo(T (tj−1)) if t ∈ [tj−1, tj), j = 1, . . . ,K and

σreo
K (T (T )) := σreo(T (T )). (56)

Due to the continuity of σreo(T (t)) (and thus, in particular, uniform boundeness) on
[0, T ] (cf. (D4)), we may employ Lebesgue’s dominated convergence theorem to get

lim
K→∞

∫
T

0
σreo
K (T (t)) dµα(t) =

∫
T

0
σreo(T (t)) dµα(t). (57)

Moreover, exploiting the definition of the interpolant σreo
K and positivity of σreo in (16),

we obtain the following inequality:

∫
T

0
σreo
K (T (t)) dµα(t) =

K∑

j=1

∫ tj

tj−1

σreo
K (T (tj−1)) dµα(t)

≥
K∑

j=1

σreo
K (T (tj−1))

∫ tj

tj−1

dµ∗
α(t) =

K∑

j=1

Dreo(tj−1, α(tj−1), α(tj)), (58)
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where the Radon measure µ∗
α is defined for every closed set S := [s, z] ⊂ [0, T ] through

µ∗
α(S) := Dreo

(α(s), α(z)). Notice that in the inequality on the second line we actually
exploited the definition (28).

Now, testing (31) in the point (u(tj−1), α(tj−1), η(tj−1)) by (u(tj), α(tj), η(tj)) gives
(after summation over j = 1, . . . ,K)

E(t, u(t), α(t), η(t)) + Disstr(α, [0, t]) +

∫
T

0
σreo
K (T (t)) dµα(t)− E(0, u(0), α(0), η(0))

≥ E(t, u(t), α(t), η(t)) +
K∑

j=1

Dtr(α(tj−1), α(tj))

+

K∑

j=1

Dreo(tj−1, α(tj−1), α(tj))− E(0, u(0), α(0), η(0))

≥
K∑

j=1

∫ tj

tj−1

∂tE(s, u(tj), α(tj), η(tj)) ds

=
K∑

j=1

∂tE(tj , u(tj), α(tj), η(tj))|tj − tj−1|
︸ ︷︷ ︸

(I)

−
K∑

j=1

̺j |tj − tj−1|
︸ ︷︷ ︸

(II)

, (59)

where we defined

̺j :=
1

|tj − tj−1|

∫ tj

tj−1

[∂tE(s, u(tj), α(tj), η(tj))− ∂tE(tj , u(tj), α(tj), η(tj))] ds. (60)

As K → ∞ in (59) term (I) converges to
∫
T

0 ∂tE(s, u(s)) ds by [23, 66] which allows to
approximate the Lebesgue integral by Riemann sums, while term (II) converges to 0 by
the uniform continuity of ∂tE(t, ·) on the compact set [0, T ] (cf. [23] for details).

4 Numerical implementation and simulations

Now we proceed with a brief description of the way the numerical implementation of
the proposed model is treated. We specify forms of the material functions and values of
material parameters and present a validating simulation.

4.1 Concept of numerical implementation

The analysis of existence of energetic solutions provides grounds for numerical implemen-
tation of the model; indeed (TIP) provides the starting point for our implementation.
Let us just note that, in order to simplify the implementation, we omit the regularization
term in the energy – and denote the modified energy as Ẽ – since ν is presumed to be very
small.9

The global minimization problem in a time-point tk (k = 1, . . . , N) of a time-discretization
0 = t0 ≤ t1 ≤ . . . ≤ tN = T then takes the form

Minimize Ẽ(tk, u, εin, ξ, η) +D(tk, ε
in
k−1, ξk−1, ε

in, ξ)

subject to (u, εin, ξ, η) ∈ Q; (61)

9Note that this term is not relevant when proving existence of discrete energetic solutions.
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where (u0, ε
in
0 , ξ0, η0) := (u(0), εin(0), ξ(0), η(0)) ∈ Q defined through initial conditions.

A possible effective method of solution of (61) is to split it into two complementary
subproblems, which are to be solved consecutively.10 To this end, let us note that D is
independent on u, hence, minimization in (61) with respect to u – other variables fixed and
considered as parameters for the moment – can be viewed as minimization of a potential
energy with respect to displacement, which is a rather standard problem solvable by finite
element method.

Hence, the first subproblem corresponds to minimization with respect to displacement
on the level of domain Ω, i.e. finding global mechanical balance, and it can be iteratively
solved by employing a finite element software. At p-th iteration (p ∈ N), the problem
takes the form:

Minimize Ẽ(Tk, u, ε
in
k,p−1, ξk,p−1, ηk,p−1)

subject to u ∈ Udisc; (62)

where (εink,p−1, ξk,p−1, ηk,p−1) now represent a set of parameters resulting from the sec-

ond subproblem and Udisc is a suitable approximation of U . We put (εink,0, ξk,0, ηk,0) :=

(εink−1, ξk−1, ηk−1) and the set is upgraded after every iteration in (62). Let us note the
number of parameters in this set depends on spatial discretization of Ω.

The second subproblem corresponds to minimization only with respect to internal vari-
ables, i.e. local thermodynamical balance. It can be solved in each material point inde-
pendently and represents the constitutive response:

Minimize f(Tk, εk,p, ε
in, ξ, η) + δ(Tk, ξk−1, ε

in
k−1, ξ, ε

in)

subject to (εin, ξ, η) satisfying constraints in (5) and (4). (63)

Here, in each material point, strain εk,p is derived from displacement uk,p generated in
actual iteration of the minimization problem (62). Since the cost function in convex the
consolidated result of the iteration process corresponds (with respect to numerical error)
to the solution of (61) or, in other words the solutions of the iteration process converge to
solutions of (61) [68, 69].

Constraints given by inequalities in (5) and (4) can be imposed by inclusion of appro-
priate form of indicator function to the minimized (cost) function in (63). Due to physical
reasons [25], it may be advantageous to use a regularized form of the indicator function,
denoted r(εtr, ξ, η) in that work, which assures smooth behavior when internal variables
approach limiting values.

In the present work, the minimization problem (63) was solved by the method in-
troduced by [70]. It is an iterative, derivative-free optimization algorithm suitable for
non-smooth functions. The corresponding subroutine was then implemented into Abaqus
finite element analysis software. Details including the particular form of the regularized
indicator function can be found in [25].

4.2 Specification of material functions

To capture the transformation strain anisotropy of the material and the well-known
tension-compression asymmetry (e.g. [71]), we specify the function 〈 · 〉 as follows:

〈εin〉 = I2(Dε
in)

k

cos
(
1
3arccos(1− a(I3(Dε

in) + 1))
)

cos
(
1
3arccos(1− 2a)

) , (64)

10Such an approach is sometimes termed combined minimization principle, see e.g. [67].
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k [1] EA [GPa] EM [GPa] ER [GPa] GA [GPA] GM [GPa] GR [GPa]
0.07 71 41 43 25 22 15

a [1] A [1] B[1] ϕ [rad] L [1] M [1] N [1]
0.8 1 1 0 1 1.44 1.44

As [◦C] Af [◦C] Ms [◦C] Mf [◦C] Rs [◦C] Rf [◦C] T0 [◦C]
-17 -13 -22 -24 38 1 -19

∆sAM [J/◦C] ∆sAR [J/◦C] σreo
0 [MPa] Σreo [MPa/◦C] creg [MPa] Eint [MPa]

0.364 0.121 130 -0.9 10 30

Table 1: Table of material parameters used in simulations. Parameters A,B, ϕ, L,M,N
specify the linear mapping D, parameters creg, Eint determine the regularized indicator
function r, see [25] for details.

where I2(x) =
√

2
3‖x‖ and I3(x) = 4det(x)

I2(x)3
. The material parameter k represents the

maximum transformation strain in tension, whereas parameter a characterizes the tension-
compression asymmetry and ranges between 0 (no tension-compression asymmetry) and 1
(transformation strain in compression is a half of the strain in tension). The linear mapping
D : R3×3 → R

3×3 is chosen so that the model can be adjusted to material symmetry of
macroscopic inelastic strain observed in experiments. The particular form of D used in
our simulations can be found in [25] and it corresponds to transversal isotropy usually
observed in NiTi wires.

As mentioned in Subsection 2.2.3, it is often experimentally observed that the stress
needed for initialization of martensite reorientation decreases with increasing temperature.
This motivates the particular form of the material function σreo to be a decreasing linear
function of temperature in the temperature range of interest, i.e.

σreo(T ) = σreo
0 +Σreo · (T − T0), (65)

where σreo
0 and Σreo are material parameters.

The above forms are chosen to provide enough freedom for adaptation of the model to
material properties which can differ due to variation in composition or processing, albeit
trying to keep the number of input parameters low to facilitate the experimental effort
prior to simulations.

4.3 Numerical simulation of a NiTi helical spring

In this subsection we present a simulation of loading of a NiTi superelastic helical spring
at constant temperature. Such a spring was used in an investigation of fatigue lifetime of
NiTi wire in combined loading in [24].

Figure 2 presents two-coil model of the spring in finite element model software Abaqus
(7680 eight-node hexaedral elements C3D8R used). The outer diameter of a coil is
3.14mm, its length is 1.05mm, the coil wire has 0.19mm in diameter. The material
parameters of the wire are summarized in Table 1.11 Let us note that elastic properties in
tension and torsion were considered as independent (not related through the bulk modu-
lus) because of the strong texture in the real wire [25]. The symmetry axis of transverse
isotropy of the material is supposed to follow the axis of the wire forming the spring. The
corresponding uniaxial and shear response of a material point at temperature at which
the spring was loaded, Tsim = 20◦C, are presented in Fig. 3.

11Note that restrictions (16) are satisfied for a reasonable range of working temperature. Moreover, due
to [72], requirements imposed on function 〈·〉 in (D2) can be also verified.
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Figure 2: A helical spring model: undeformed shape in grey (used meshing shown) and de-
formed shape at 19.3mm stroke in colors; color map shows distribution of volume fraction
of martensite.
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Figure 3: Uniaxial and pure shear response of a material element with parameters accord-
ing to Table 1. Red (solid) line corresponds to uniaxial loading, blue (dot-dashed) line
to pure shear loading. In shear, values of equivalent shear strain (γ/

√
3) and shear stress

(
√
3τ) are reported. Note pronounced tension-compression asymmetry in uniaxial loading

(since a 6= 0) and reduced transformation strain in shear (since N 6= 1).
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Figure 4: Experimental (dashed blue line) and simulated (solid red line) force-stroke
response of a helical spring for three loading-unloading cycles with maximum stroke of
10.4mm, 15.2mm and 19.3mm.
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Figure 5: Distribution of volume fraction of martensite (VFM) and R-phase (VFR) within
a cross section of the wire for stroke of a) 10.4mm, b) 15.2mm, c) 19.3mm in forward
loading. The lowest point of the cross-section is the closest one to the spring axis.
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Figure 2 also shows the deformed shape of the spring at stroke 19.3mm. The contour
plot provides basic information about distribution of volume fraction of martensite on the
surface of the spring.

In Fig. 4, simulated force-stroke response for three loading-unloading cycles is com-
pared to experiments. Even though clamping of the real spring may influence the response
(especially at the highest stroke when the spring faces uncoiling), a rather good correspon-
dence between experiments and simulations is reached in general.

Distribution of volume fraction of martensite and R-phase within the cross section of
the wire far from the ends at three strokes during loading (denoted by black circles in
Fig. 4) are presented in Fig. 5. In stress free state, approx. 49% of R-phase and 51% of
austenite is present in the material (Rf < Tsim < Rs). When loaded the wire is deformed
both in torsion and bending. First, shear induces increase of R-phase concentration near
the surface of the spring. Moreover, the inner part of the surface which is closest to the
spring axis is deformed in tension, which promotes further transformation to R-phase and
leads to early occurrence of martensite in this region, see a). Due to tension/compression
asymmetry (cf. Fig. 3), the same process induced by compression on the opposite side
of the surface is retarded and transformation from R-phase to martensite starts at higher
loading, see b). The tension/compression asymmetry also causes that the neutral axis in
loading is shifted from the center of the cross section of the wire towards the outer surface
of the spring. Hence, the minimum of volume fraction of martensite is closer to the outer
surface, as readily seen in c).
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[8] Roub́ıček T. Models of microstructure evolution in shape memory materials. In:
Ponte Castaneda Pea, editor. Nonlinear Homogenization and its Application to Com-
posites, Polycrystals and Smart Materials. NATO Sci. Ser. II/170. Kluwer, Dordrecht;
2004. p. 269–304.

[9] Auricchio F, Petrini L. A three-dimensional model describing stress-temperature in-
duced solid phase transformations: solution algorithm and boundary value problems.
Int J Numer Meth Engng. 2004; 61:807–836.

[10] Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S. A 3-D phenomeno-
logical constitutive model for shape memory alloys under multiaxial loadings. Int J
Plast. 2010; 26:976–991.

[11] Bouvet C, Calloch S, Lexcellent C. A Phenomenological Model for Pseudoelasticity of
Shape Memory Alloys Under Multiaxial Proportional and Nonproportional Loading.
Eur J Mech A. 2004; 23:37–61.

[12] Chemisky Y, Duval A, Patoor E, Ben Zineb T. Constitutive model for shape memory
alloys including phase transformation, martensitic reorientation and twins accommo-
dation. Mech Mater. 2011; 43:361–376.

[13] Peultier B, Ben Zineb T, Patoor E. Macroscopic constitutive law for SMA: Applica-
tion to structure analysis by FEM. Mech Mater. 2006; 38:510–524.

[14] Zaki W, Moumni Z. A three-dimensional model of the thermomechanical behavior of
shape memory alloys. J Mech Phys Solids. 2007; 55:2455–2490.

[15] Panico M, Brinson LC. A three-dimensional phenomenological model for martensite
reorientation in shape memory alloys. J Mech Phys Solids. 2007; 55:2491–2511.

[16] Lagoudas DC, Hartl DJ, Chemisky Y, Machado LG, Popov P. Constitutive model
for the numerical analysis of phase transformation in polycrystalline shape memory
alloys. Int J Plast. 2012; 32–33:155–183.
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