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EXISTENCE ANALYSIS FOR A MODEL DESCRIBING FLOW

OF AN INCOMPRESSIBLE CHEMICALLY REACTING

NON-NEWTONIAN FLUID

MIROSLAV BULÍČEK AND PETRA PUSTĚJOVSKÁ

Abstract. We consider a system of PDE’s describing steady motions of an in-
compressible chemically reacting non-Newtonian fluid. The system of governing

equations composes of the convection-diffusion equation for concentration and

generalized Navier-Stokes equations where the generalized viscosity depends
polynomially on the shear rate (the modulus of the symmetric part of the
velocity gradient) and the coupling is due dependence of the power-law index

on the concentration. This dependence of power-law index on the solution itself
causes main difficulties in the analysis of the relevant boundary value problem.
We generalize the Lipschitz approximation method and show the existence of a

weak solution provided that the minimal value of the power-law exponent is
bigger than d/2.

1. Introduction

We are interested in developing an existence theory for steady flows of incom-
pressible generalized Navier-Stokes equations, wherein the viscosity is a polynomial
function of the shear-rate (the modulus of the symmetric velocity gradient) with
the power of polynomial dependence on the concentration coupled with convection–
diffusion equation for concentration. Namely, we study the following system of
PDE’s

div v = 0,(1.1)

div(v ⊗ v)− divS(c,Dv) = −∇π + f ,(1.2)

div(cv)− div qc(c,∇c,Dv) = 0,(1.3)

that is supposed to be satisfied in an open bounded domain Ω ⊂ Rd (d > 2),
where v : Ω → Rd, π : Ω → R, c : Ω → R+ are unknown velocity, pressure and
concentration fields, respectively. Here f : Ω → Rd represents a given density of
the bulk force, Dv denotes the symmetric part of the velocity gradient ∇v, i.e.,
Dv = 1

2 (∇v + (∇v)T), and S(c,Dv) and qc(c,∇c,Dv) are the extra stress tensor
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of the Cauchy stress tensor and the diffusion flux, respectively. To complete the
problem (1.1)–(1.3) we prescribe the following Dirichlet boundary conditions

v = 0, c = cd on ∂Ω,

for which we denote c− := minx∈∂Ω cd and c+ := maxx∈∂Ω cd. We assume the extra
stress tensor S : R+

0 × Rd×dsym → Rd×dsym being a continuous mapping that fulfills

following growth, strict monotonicity and coercivity conditions for all c ∈ [c−, c+]
and all B, B1, B2 ∈ Rd×dsym

|S(c,B)| 6 C1(|B|p(c)−1 + 1),(1.4)

(S(c,B1)− S(c,B2)) · (B1 −B2) > 0 for B1 6= B2,(1.5)

S(c,B) ·B > C2(|B|p(c) + |S|p′(c))− C3,(1.6)

where p : R+ → R+ is a Hölder continuous function such that 1 < p− 6 p(c) 6 p+ <

∞ and p′(c) is defined as p(c)
p(c)−1 . Additionally, we assume that the concentration

flux vector qc(c, g,B) : R × Rd × Rd×d → Rd is a continuous mapping being in
addition linear with respect to g and fulfilling for all c, g,B ∈ R× Rd × Rd×d the
following inequalities

|qc(c, g,B)| 6 C4|g|,
qc(c, g,B) · g > C5|g|2,(1.7)

where Ci are some positive constants.
The prototype examples, we have in mind, are of the following form

S(c,Dv) = ν(c, |Dv|)Dv, qc(c,∇c,Dv) = K(c, |Dv|)∇c,

where the generalized viscosity ν(c, |Dv|) depends on the shear-rate and on the
concentration in the following fashion

ν(c, |Dv|) ∼ ν0

(
κ1 + κ2|Dv|2

) p(c)−2
2 ,(1.8)

where ν0, κ1, κ2 stand for positive constants. To p(·) we shall refer to a variable
exponent function. Since we have in mind a specific application (as described in the
paragraph lower), this function satisfies additional requirements. More precisely, it
is a continuous strictly monotone function reflecting shear-thinning/shear-thickening
properties of the fluid, this means, it is bounded by 1 < p(c) <∞, where both limits
hold for non-physiological and/or non-physical values of c (either 0 or 1 (infinite
concentration)). One example of such function is plotted in Fig. 1.

Such a system is suitable for a description of various biological fluids, e. g.
synovial fluid or blood. Even though the rheological responses of both these type of
fluids are based on presence of different chemical/biological constituent, they behave
as shear-thinning fluids (for example at simple shear test), for which the measure of
“how the fluid thins the shear” is related to a concentration of this constituent. In the
case of blood, these are the red blood cells (and their ability of network formation),
see for example [3] or [18, Chap. 2], on the other hand, in the case of synovial fluid,
the governing concentration corresponds to one particular polysaccharide, see for
example [20] or [27]. Here, we shall not discuss the rheological background of those
fluids in more detail, rather we refer the interested reader to [3, 18, 20, 27] devoted
to this topic.
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Figure 1. Shear-thinning index of viscosity function (1.8) for
synovial fluid, see [20] or [27]. The exponent p is plotted as func-
tion of concentration. The physiological values (standardly ob-
served for non-pathological synovial fluid) are approximately in
range (0.1, 0.25), in graph depicted by a gray rectangle. Non-
dimensionalized concentration c = 1 refers to (non-physical) 100%
concentration of the solvent. Dashed lines correspond to lower
bounds p− as required by the mathematical tools employed in
the proof of existence of a weak solution. As one can see, bound
p− > 3d

d+2 is too restrictive and p− > d
2 is unrealizable for higher

physiological concentration.

2. Notation and the main result

In this section we introduce the function spaces used in the paper, the basic
notation and finally we state the main result. We denote the set of all measurable
functions p : Ω → [1,∞] by P(Ω), and call the function p ∈ P(Ω) a variable
exponent. Then we define p− := ess infx∈Ω p(x) and p+ := ess supx∈Ω p(x). Further,
for simplicity, we assume only the case when

1 < p− 6 p+ <∞.(2.1)

We introduce the generalized Lebesgue spaces equipped with corresponding Luxem-
bourg norms

Lp(·)(Ω) :=

{
u ∈ L1

loc(Ω) :

ˆ
Ω

|u(x)|p(x) dx <∞
}
,

‖u‖Lp(·)(Ω) = ‖u‖p(·) := inf

{
λ > 0 :

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx 6 1

}
.

In the same manner we define the generalized Sobolev spaces

W 1,p(·)(Ω) :=

{
u ∈W 1,1(Ω) ∩ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
,

‖u‖W 1,p(·)(Ω) = ‖u‖1,p(·) := inf

{
λ > 0 :

ˆ
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

+

∣∣∣∣∇u(x)

λ

∣∣∣∣p(x)

dx 6 1

}
.

All above spaces are Banach spaces, and due to (2.1) they are separable and reflexive.
Moreover, (Lp(·)(Ω))

∗
= Lp

′(·)(Ω) where the dual variable exponent p′ ∈ P(Ω) is
defined by 1

p(x) + 1
p′(x) = 1.
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Additionally to the Lebesgue and Sobolev spaces we introduce the function spaces
relevant to the problems of incompressible fluids. First, X(Ω)d denotes space of
d−vector valued functions with components from X(Ω). In the same manner we
also define the space of tensor-valued functions X(Ω)d×d. Then we introduce the
following notation

W 1,p(·)
0 (Ω) :=

{
u ∈W 1,p(·)(Ω) : u = 0 on ∂Ω

}
,

W 1,p(·)
0,div (Ω) :=

{
u ∈W 1,p(·)

0 (Ω)d : divu = 0
}
,

Lp(·)0 (Ω) :=
{
f ∈ Lp(·)(Ω) :

ˆ
Ω

f(x) dx = 0
}
.

Through the whole text, we denote a duality pairing between f ∈ X and g ∈ X? by
〈f, g〉X,X? , or, if it is clear from the context, we skip for simplicity the indices and
write 〈f, g〉. By A ·B we denote a scalar product between two tensors, |Q| stands
for the Lebesgue measure of the set Q ⊂ Rd, and C refers to some general positive
constant (or function independent of the crucial variables) which may change at
each appearance.

Now, we are ready to formulate the main theorem on existence of a weak solution
to a system (1.1)–(1.7).

Theorem 1. Let Ω ⊂ Rd with d > 2 be a bounded Lipschitz domain and cd ∈
W 1,q(Ω) for some q > d. Let us denote

c− := min
x∈∂Ω

cd(x), c+ := max
x∈∂Ω

cd(x)

and assume that p : R+ → R+ is a Hölder continuous function such that d
2 < p− 6

p(c) 6 p+ < ∞ for all c ∈ [c−, c+]. Moreover, let f ∈ (W 1,p−

0,div(Ω))∗ and S and

qc satisfy the assumptions (1.4)–(1.7). Then there exists a couple (v, c) and some
α ∈ (0, 1) such that

(c− cd) ∈ C0,α(Ω) ∩W 1,2
0 (Ω),

v ∈W 1,p(c)
0,div (Ω),

fulfillingˆ
Ω

S(c,Dv) · ∇ψ − (v ⊗ v) · ∇ψ dx = 〈f ,ψ〉 ∀ψ ∈W 1,∞
0,div(Ω),(2.2)

ˆ
Ω

qc(c,∇c,Dv) · ∇ϕ− cv · ∇ϕdx = 0 ∀ϕ ∈W 1,2
0 (Ω).(2.3)

The existence analysis for a similar model (even unsteady case) was developed
in [4], where however the power-law index is fixed and does not depend on the
concentration. Here, we have to deal with a model, where the value of the index is
in principle x−dependent and in addition a priori unknown. Such a generalization
then leads to difficulties in the analysis of the corresponding system of PDE’s.
To illustrate them, we first recall the results related to our problem where the
power-law index is a given number or a given x−dependent function. For the fixed
x−independent exponent, one can use the method of monotone operators provided
that ψ := v in (2.2) is admissible test function. This then naturally leads to the
restriction on the class of p’s for such (due to the convective term) W 1,p ↪→ L2p′ , and
thus to p > 3d

d+2 . Nevertheless, such a bound is unsatisfactory in many application.
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This gave rise to a real interest to lower it to a more realistic one, which led to a
series of papers where the final limit of p > 2d

d+2 was reached (as far as it seems the

most optimal one), corresponding to the compact embedding W 1,p ↪→↪→ L2, and
consequently to compactness of the convective term in L1. We refer the interested
reader to [13, 16, 17] where the existence theory for fixed index is established and
where the so-called L∞ and Lipschitz approximation methods are developed.

Interestingly, it was observed that in many situations the power-law index may
not be fixed but can depend also on the spatial variable x, see e.g. [28] for a model
of generalized Navier–Stokes equations wherein viscosity is of similar power growth
as ours but with p(·) := p(|E(x)|2) ∼ p(x), E being a given electric field vector.
Such models were studied in [29, 30], where the existence theory is built by using the
monotone operator theory and also the so-called higher regularity technique under
the assumption that the given E and consequently p is smooth enough. Recently,
the Lipschitz approximation method was generalized to the spaces with variable
exponents in [13], where the existence theory is established if p− > 2d

d+2 provided

that p(·) is a given log-Hölder continuous function (see the next section for the
precise definition).

Finally, the mathematical analysis of the model where the power-law index is
also unknown starts in [5], where the existence theory is established with the help
of generalized monotone operator theory for p− > 3d

d+2 . Nevertheless, as Fig. 1
suggests and as we have discussed above, the assumption on the bound of the
exponent function arising from the compactness argument is rather too restrictive
than realistic. Theorem 1 then gives the final answer for the case when we are able to
provide the Hölder continuity of the concentration. We would like to emphasize here,
that the bound p− > d

2 >
2d
d+2 corresponds to the setting for which one can prove

the Hölder continuity of c (and consequently of p) by the means of De Giorgi method
applied on (2.3). Moreover, in view of the results in [13], at least some continuity of
the power-law exponent is needed not only for the Lipschitz approximation method,
where such a fact is profoundly used, but also from the point of view of the function
spaces theory (the Korn inequality, the embedding theorems, the continuity of the
maximal function, etc., see the next section for more details). In addition, the
technique developed in this paper is a generalization of the Lipschitz approximation
method, where however such approximation is essentially done for a sequence of
functions and also for a sequence of Sobolev spaces with variable exponent. We
also believe that this may serve as a starting point for further analysis of similar
problems.

The rest of the paper is organized as follows. In Section 3 we recall the properties
of the Sobolev spaces with variable exponent and also some auxiliary results needed
in the proof of the main theorem. Then in Section 4, we prove a generalization of
the Lipschitz approximation method and finally in Section 5 we give the proof of
Theorem 1.

3. Auxiliary tools & results

In this section, we introduce all necessary technical tools needed in the paper.
First, we introduce a subset P log(Ω) ⊂ P(Ω) as a class of log-Hölder continuous
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exponents satisfying

|p(x)− p(y)| 6 Cp(·)
− ln |x− y|

∀x, y ∈ Ω : 0 < |x− y| 6 1

2
.(3.1)

Note that standard Hölder continuous functions on Ω (which are bounded as
required) belong to this class. Also for later purpose, we define for any u ∈ L1(Rd)
the (non-centered) maximal function Mu by

(Mu)(x) := sup
r>0

1

Br(x)

ˆ
Br(x)

|u(y)| dy,

where the supremum is taken over all balls (cubes) containing x, and M is the
so-called Hardy–Littlewood maximal operator. Similarly, for u ∈ W 1,1(Rd)d we
denote M(Du) := M(|Du|).

Having this notation we can introduce the first lemma recalling the basic properties
of variable Sobolev spaces with log-Hölder continuous exponent.

Lemma 2 (Properties of variable exponent Sobolev spaces, [10]). Let Ω ⊂ Rd be
an open bounded Lipschitz domain and let p ∈ P log(Ω) satisfy (2.1). Then we have
the density of smooth functions, i.e.,

C∞(Ω)
‖·‖1,p(·)

= W 1,p(·)(Ω),

the embedding theorem, i.e., if 1 < p− 6 p+ < d then

W 1,p(·)(Ω) ↪→ Lq(·)(Ω) 1 6 q(x) 6
d p(x)

d− p(x)
=: p∗(x),

being compact for q(x) < p∗(x), and the Korn inequality

‖∇v‖p(·) 6 C(Ω, Cp(·))‖Dv‖p(·) for all v ∈W 1,p(·)
0 (Ω)d.

We would like to mention that the book [10] is referred here as a comprehensive
source of information. We refer the interested reader to [14, 21, 22, 23, 25, 31]
for more detail description and for the original proofs. In addition, note that the
log-Hölder continuity is not the necessary assumption for the validity of Lemma 2
but it is known that it is almost the “optimal” property as indicated for example in
in [9] or [26]. Moreover, we refer also to [11, 15, 19], works devoted to the difficulties
connected with non-validity of Lemma 2 in the context of fluid mechanics.

Next, we recall the extension theorem for variable exponent and the continuity
of the maximal function in variable exponent spaces.

Lemma 3 (Variable index extension, [6]). Let Ω ⊂ Rd be an open bounded Lipschitz
domain and let p ∈ P log(Ω) be arbitrary. Then there exists an extension1 q ∈
P log(Rd) such that q− = p− and q+ = p+, and the Hardy–Littlewood maximal
operator M is continuous from Lq(·)(Rd) to Lq(·)(Rd).

Following result summarizes the properties of Bogovskĭı operator in the variable
exponent settings.

1For unbounded domains, function from P log has to additionally satisfy a proper log-Hölder
decay.
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Lemma 4 (Bogovskĭı operator, [10, Sec. 14.3.]). Let Ω ⊂ Rd be a bounded Lipschitz
domain and p ∈ P log(Ω) satisfy (2.1).Then there exists a linear continuous operator

B : Lp(·)0 (Ω)→W 1,p(·)
0 (Ω)d such that for each f ∈ Lp(·)0 (Ω) we have

div(Bf) = f,

‖Bf‖1,p(·) 6 C‖f‖p(·),(3.2)

where C depends on Ω, p−, p+ and Cp(·) from (3.1).

Next, in order to ensure the Hölder continuity of the variable exponent the
following celebrated result will be used.

Lemma 5 (De Giorgi [8] - Nash [24], see also [2, Sec. 2.3.]). Let Ω ⊂ Rd be a
bounded set with Lipschitz boundary and let q > d be given. Assume that that there
are C1, C2 > 0 such that

K ∈ L∞(Ω)d×d : |Kij | 6 C1, Kb · b > C2|b|2 for all b ∈ Rd.

Then there exists α > 0 depending only on Ω, C1, C2 and q, such that for any
g ∈ Lq(Ω)d and any cd ∈ W 1,q(Ω) there exists unique c ∈ W 1,2(Ω) such that

c− cd ∈W 1,2
0 (Ω) ∩ C0,α(Ω) solvingˆ

Ω

K∇c · ∇ϕdx =

ˆ
Ω

g · ∇ϕdx ∀ϕ ∈W 1,2
0 (Ω),

and fulfilling the uniform estimate

‖c‖W 1,2∩C0,α 6 C(Ω, C1, C2, q, ‖g‖q, ‖cd‖1,q).

Finally, we recall the result on the Lipschitz approximation of functions belonging
to W 1,1(Rd)d.

Lemma 6 (Lipschitz approximation for W 1,1(Rd)d, [1]). There exists C > 0
depending only on the dimension d such that for all u ∈W 1,1(Rd)d and all λ > 0
there exists uλ ∈W 1,∞(Rd)d such that

‖uλ‖1,∞ 6 C λ,

{x ∈ Rd : u(x) 6= uλ} ⊂ {x ∈ Rd : M(∇u)(x) > λ}.

The proof of Lemma 6 is based on the extension theorem. However, a more
constructive proof can be found e.g. in [12].

4. Lipschitz approximation method in W 1,pn(·)

The use of the Lipschitz approximation method is the heart of the proof of
Theorem 1 needed for identification of the weak limit of the extra Cauchy stress.
Therefore, we formulate and prove it in this separated section, using the notation
of the next Section 5. The couple (vn, pn) denotes a sequence of approximative
solution where

pn(x) := (p ◦ cn)(x) for all x ∈ Ω,(4.1)

with cn being a sequence of approximative concentrations. The following theorem
therefore essentially extends the similar result from [13], where however the authors
did not need to face the difficulty that the variable exponent (and consequently the
function spaces) changes with the sequence itself.
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Theorem 7 (Lipschitz approximation). Let Ω ⊂ Rd be an open bounded Lipschitz
domain and assume that {pn,vn}∞n=1 is a sequence such that 1 < p− 6 pn(x) 6
p+ <∞ for all x ∈ Ω and

vn ⇀ v weakly in W 1,p−

0 (Ω)d,(4.2)

pn → p strongly in C0,β(Ω),(4.3)

for some β ∈ (0, 1). In addition assume that for all n ∈ N there holdsˆ
Ω

|∇vn|p
n(x) dx 6 C.(4.4)

Then the weak limit v satisfies

v ∈W 1,p(·)
0 (Ω)d.(4.5)

Moreover, for all j ∈ N there exists a sequence {λnj }∞n=1 such that

(2j)2j 6 λnj < (2j+1)2j+1

,(4.6)

and a sequence of truncations vnj ∈W 1,∞(Ω)d such that for all n, j ∈ N

‖∇vnj ‖∞ 6 Cλnj 6 C (2j+1)2j+1

.(4.7)

Furthermore, we can extract (not relabeled) subsequence from n such that for each
j ∈ N

vnj → vj strongly in Lσ(Ω)d for all σ ∈ [1,∞],(4.8)

vnj ⇀ vj weakly in W 1,σ(Ω)d for all σ ∈ [1,∞),(4.9)

∇vnj
∗
⇀ ∇vj *-weakly in L∞(Ω)d×d,(4.10)

where vj ∈W 1,∞(Ω)d. Moreover,

‖∇vj‖p(·) 6 C and vj → v a.e. in Ω as j →∞.(4.11)

In addition, extending vn outside Ω by zero we have

{x ∈ Ω : vnj 6= vn} ⊂
{
x ∈ Ω : M(∇vn) > λnj

}
,(4.12)

and for all n, j ∈ Nˆ
Ω

|∇vnj χ{vnj 6=vn}|p
n(x) dx ≤ C

ˆ
Ω

|λnj χ{vnj 6=vn}|p
n(x) 6

C

2j
.(4.13)

Proof. First, the validity of (4.5) directly follows from (4.2)–(4.4) and from weak
lower semicontinuity (see [5] for more details). Next, we extend each vn outside Ω
by zero and each pn as in Lemma 3. Then, we obtain

vn ⇀ v in W 1,p−(Rd)d,

pn → p in C0,β(Rd),

and by continuity of the maximal function and (4.4) we directly getˆ
Rd
|M(∇vn)|p

n(x) dx 6 C
ˆ

Ω

|∇vn|p
n(x) dx 6 C.(4.14)

Let us for each j ∈ N define a sequence {θij}
2j+1−1
i=2j such that

θij := (2j)i,
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and a sequence of subsets {U ij,n}
2j+1−1
i=2j ⊂ Rd as

U ij,n :=
{
x ∈ Rd : θij < M(∇vn)(x) 6 θi+1

j

}
.

Note, that U ij,n are mutually disjoint bounded sets, and thus

2j+1−1∑
i=2j

ˆ
Uij,n

|M(∇vn)|p
n(x) dx 6

ˆ
Rd
|M(∇vn)|p

n(x) dx 6 C.

Since the sum above is formed of 2j summands, for each n there must exist i∗ such
that

ˆ
Ui
∗
j,n

|M(∇vn)|p
n(x) dx 6

C

2j
.

Then, for this i∗ we set

λnj := θi
∗

j = (2j)i
∗
,

and thus (4.6) follows. This directly gives

ˆ

{λnj <M(∇vn)62jλnj }

|M(∇vn)|p
n(x) dx 6

C

2j
.(4.15)

Having such λnj we use Lemma 6 with λ = λnj applied on vn, thus we introduce

vnj := vnλnj .

From Lemma 6 then directly follow the properties (4.7) and (4.12). To prove (4.13)
we use (4.7) and (4.15), hence

ˆ

{vn 6=vnj }

|∇vnj |p
n(x) dx 6 C

ˆ

{vn 6=vnj }

|λnj |p
n(x) dx 6 C

ˆ

{λnj <M(∇vn)}

|λnj |p
n(x) dx

= C

ˆ
Ui
∗
j,n

|λnj |p
n(x) dx+ C

ˆ

{2jλnj <M(∇vn)}

|λnj |p
n(x) dx

6 C
ˆ
Ui
∗
j,n

(M(∇vn))p
n(x) dx+ C

ˆ
Rd

(
M(∇vn)

2j

)pn(x)

dx

6
C

2j
+

C

(2j)p−

ˆ
Rd

(M(∇vn))
pn(x)

dx 6
C

2j
.

Due to compact embedding, (4.7) and the fact that vnj are compactly supported

in Rd, we can for any fixed j ∈ N extract a subsequence fulfilling (4.8)–(4.10).
Moreover, using a diagonal procedure, we can extract another subsequence in n
such that (4.8)–(4.10) hold for each j ∈ N and n form the extracted indices. Finally,
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it follows from (4.8), (4.2), (4.12) and the Hölder inequality that

‖vj − v‖1 = lim
n→∞

ˆ
Ω

|vnj − vn| dx 6 C lim sup
n→∞

|{vnj 6= vn}|
1

p−′

6 C lim sup
n→∞

|{M(∇vn) > λnj }|
1

p−′ 6 C lim sup
n→∞

(ˆ
Ω

M(∇vn)

λnj
dx

) 1

p−′

6
C

(λnj )
1

p−′
6

C

(2j)
2j

p−′
6
C

2j
.

Consequently, the second part of (4.11) follows (again for not relabeled subsequence),
hence, from the uniqueness of a weak limit, we also have

vj ⇀ v in W 1,p(·)(Ω)d.

�

5. Proof of the main theorem

We start the proof of the main theorem by defining an auxiliary cut-off function.
For arbitrary k > 0 we introduce a smooth function Gk : R+

0 → [0, 1] with uniformly
(k-independently) bounded derivative such that

Gk(s) :=

{
1 s 6 k,

0 s > 2k.

We look for an approximative solution (vn, cn) such that vn ∈W 1,pn(·)
0,div (Ω) (with pn

defined as in (4.1)) and cn − cd ∈W 1,2
0 (Ω) such that for all ψ ∈W 1,pn(·)

0,div (Ω) and all

ϕ ∈W 1,2
0 (Ω)

−
ˆ

Ω

Gn(|vn|2)(vn ⊗ vn) · ∇ψ dx+

ˆ
Ω

S(cn,Dvn) ·Dψ dx = 〈f ,ψ〉,(5.1)

−
ˆ

Ω

cnvn · ∇ϕdx+

ˆ
Ω

qc(c
n,∇cn,Dvn) · ∇ϕdx = 0.(5.2)

Due to the boundedness of Gn(|vn|2), one can adapt the technique from [5] (a
generalization of the monotone operator theory) and establish the existence of a
weak solution to (5.1)–(5.2). Moreover, one can set ψ := vn in (5.1) and ϕ := cn−cd
in (5.2) and with the help of the assumptions (1.4)–(1.7) and the fact that div vn = 0
deduce the following uniform estimateˆ

Ω

|Dvn|p
n

+ |S(cn,Dvn)|(p
n)′ + |∇cn|2 + |qc(cn,∇cn,Dvn)|2 dx 6 C.(5.3)

Additionally, since p− > d
2 it follows from the embedding theorem, the Korn

inequality (used for the standard Sobolev space W 1,p−) and Lemma 5 that there is
α > 0 such that

‖cn‖0,α 6 C.(5.4)

Consequently, using (5.3)–(5.4), the reflexivity of the relevant spaces, the Korn
inequality and the embedding theorem we can extract subsequences (which we do
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not relabel) such that

vn ⇀ v weakly in W 1,p−

0,div(Ω),(5.5)

vn → v strongly in L2+ε(Ω)d, (ε > 0),(5.6)

cn ⇀ c weakly in W 1,2(Ω),(5.7)

cn → c strongly in C0,α̃(Ω), (α̃ < α),(5.8)

S(cn,Dvn) ⇀ S weakly in L(p+)′(Ω)d×d,(5.9)

qc(c
n,∇cn,Dvn) ⇀ qc weakly in L2(Ω)d.(5.10)

In addition, following [5], we can show by the weak lower semicontinuity that (5.3)
together with the Korn inequality implyˆ

Ω

|∇v|p(x) + |S|p′(x) dx 6 C.(5.11)

Having (5.5)–(5.11) and using the fact that Gn ↗ 1, we can let n→∞ in (5.1)–(5.2)
to obtain

−
ˆ

Ω

(v ⊗ v) · ∇ψ dx+

ˆ
Ω

S ·Dψ dx = 〈f ,ψ〉 ψ ∈W 1,∞
0,div(Ω),(5.12)

−
ˆ

Ω

cv · ∇ϕdx+

ˆ
Ω

qc · ∇ϕdx = 0 ϕ ∈W 1,2
0 (Ω).

Thus, what remains to prove is to show that

S = S(c,Dv) and qc = K(c,Dv)∇c.(5.13)

5.1. Compactness of Dvn. The first step in proving (5.13) is to show the com-
pactness of Dvn. Inspired by [7], we aim in this subsection to show that

lim
n→∞

ˆ
Ω

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx = 0.

For sure, it follows from (5.3) and the Hölder inequality that

lim sup
n→∞

ˆ
Ω

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx = L <∞.(5.14)

Hence, we need to show L = 0. Let us for arbitrary fixed κ > 0 define

Ωκ :=
{
x ∈ Ω : |Dv| > κ

}
∪
{
x ∈ Ω : dist(x, ∂Ω) 6

1

κ

}
.

Note, that our Lipschitz approximations do not vanish on the boundary, and thus
we include to the “bad part” of Ω the second term of the union above. Then, since
Ω is Lipschitz bounded, we have

|Ωκ | 6
ˆ

Ω

|Dv|
κ

dx+
C

κ
6
C

κ
,

where the last inequality follows from (5.11). Next, we decompose the claimed
integral intoˆ

Ω

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx = Jnκ + Inκ ,(5.15)
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where

Jnκ :=

ˆ
Ωκ

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx,

Inκ :=

ˆ
Ω\Ωκ

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx.

To estimate Jnκ , we use (5.3), (5.11) and the Hölder inequality to conclude

Jnκ 6 C|Ωκ |
1
2 6

C√
κ
.

Next, we introduce a matrix-truncation function Tκ : Rd×d → Rd×d at height κ > 0
as

Tκ(B) :=

{
B |B| 6 κ,
κ B
|B| |B| > κ.

and rewrite the integral Inκ in the terms of truncation Tκ(Dv) which collides with
Dv on Ω \ Ωκ , and then, due to positiveness of the argument, we extend the
integral on the whole domain, i.e.,

Inκ =

ˆ
Ω\Ωκ

(
(S(cn,Dvn)− S (cn,Tκ(Dv))) · (Dvn − Tκ(Dv))

)1
4

dx

6
ˆ

Ω

(
ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) · (Dvn − Tκ(Dv))

)1
4

dx,

where ξκ ∈ D(Ω) is arbitrary fixed function such that 0 6 ξκ 6 1, ξκ(x) = 1 if
dist(x, ∂Ω) > 1

κ . Let us estimate the last term using the Lipschitz truncations.
Since p is a Hölder continuous function and cn fulfills (5.8), we see that (vn, pn)
satisfies the assumptions of Theorem 7 and therefore for arbitrary j ∈ N we can find
vnj ∈W 1,∞(Ω)d. Then, by using the Hölder inequality, we have

Inκ 6
ˆ

Ω

(
ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) · (Dvn − Tκ(Dv))

)1
4

dx

6

( ˆ

{vnj =vn}

ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) ·
(
Dvnj − Tκ(Dv)

)
dx

)1
4

|Ω| 34

+

( ˆ

{vnj 6=vn}

(
(S(cn,Dvn)− S(cn,Tκ(Dv))) · (Dvn − Tκ(Dv))

)1
2

dx

)1
2

|{vnj 6= vn}| 12

=: (Inκ,j{=})
1
4 |Ω| 34 + (Inκ,j{6=})

1
2 |{vnj 6= vn}| 12 .

First, as an easier term, we handle the latter term with Inκ,j{6=}. Note that by (4.6),
(4.12) and (4.14) we have

|{vnj 6= vn}| = ‖χ{vnj 6=vn}‖1,Ω 6
ˆ
Rd

M(Dvn)

λnj
dx 6

C

(2j)2j
,
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and thus, it follows from the Hölder inequality, (5.3) and (5.11) that

(Inκ,j{6=})
1
2 |{vnj 6= vn}| 12 6 C

2j
.

Finally, we estimate the first integral Inκ,j{=}, decomposed into

Inκ,j{=} =

ˆ
Ω

ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) ·
(
Dvnj − Tκ(Dv)

)
dx(5.16)

−
ˆ

{vnj 6=vn}

ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) ·
(
Dvnj − Tκ(Dv)

)
dx.

Let us analyze the second term using the Young inequality, (1.4), and (4.13)∣∣∣∣ ˆ

{vnj 6=vn}

ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) ·
(
Dvnj − Tκ(Dv)

)
dx

∣∣∣∣
6

ˆ

{vnj 6=vn}

|S(cn,Dvn) ·Dvnj | dx+ C(κ)

ˆ

{vnj 6=vn}

(|S(cn,Dvn)|+ |Dvnj |+ 1) dx

6 C

ˆ

{vnj 6=vn}

|∇vn|p
n(x)−1λnj dx+ C(κ)|{vnj 6= vn}|

1

p+

6
C

(p+)′

ˆ

{vnj 6=vn}

|∇vn|p
n(x) dx+

C

p−

ˆ

{vnj 6=vn}

|λnj |p
n(x) dx+

C(κ)

(λnj )
1

p+

6
C(κ)

2j
.

To analyze the first term in (5.16), we have no suitable estimates by hand. A natural
choice would be, since we can control the convective term for Lipschitz test functions,
to use the weak formulation. Here, nevertheless, one can not use the Lipschitz
approximation vnj since they do not posses (in general) the divergence-free property,
and they do not vanish on the boundary. To elude this fact, let us introduce div-free
approximations with zero trace by the means of Bogovskĭı operator (Proposition 4).
First define

ζn,1κ,j := B
(
ξκ div vnj −

ffl
Ω
ξκ div vnj dx

)
,

ζn,2κ,j := B
(
∇ξκ · vnj −

ffl
Ω
∇ξκ · vnj dx

)
.

Then, from the linearity of B it follows

ζnκ,j := ξκv
n
j − ζ

n,1
κ,j − ζ

n,2
κ,j = ξκv

n
j − B(div(ξκv

n
j )).

Consequently, from Lemma 4, it directly follows that div ζnκ,j = 0 and that ζnκ,j has
zero trace on ∂Ω. Moreover, from the fact that continuous operator preserves weak
convergence, (3.2) and (4.8)–(4.9) it follows that for each j ∈ N

ζnκ,j ⇀ ξκvj − B(div(ξκvj)) ≡ ζκ,j in W 1,σ(Ω)d,(5.17)

ζnκ,j → ζκ,j in Lσ(Ω)d,

ζn,2κ,j → B
(
∇ξκ · vj −

ffl
Ω
∇ξκ · vj dx

)
≡ ζ2

κ,j in W 1,σ(Ω)d,(5.18)
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as n → ∞, where σ ∈ (1,∞) is arbitrary. Then, we can rewrite the first term in
integral (5.16) in the terms of these approximations to obtain

ˆ
Ω

ξκ (S(cn,Dvn)− S(cn,Tκ(Dv))) ·
(
Dvnj − Tκ(Dv)

)
dx

=

ˆ
Ω

S(cn,Dvn) ·
(
Dζnκ,j +Dζn,2κ,j −∇ξκ v

n
j

)
dx

+

ˆ
Ω

S(cn,Dvn) ·Dζn,1κ,j dx

−
ˆ

Ω

ξκS(cn,Dvn) · Tκ(Dv) dx−
ˆ

Ω

ξκS(cn,Tκ(Dv)) ·
(
Dvnj − Tκ(Dv)

)
dx

=: Y n,1κ,j + Y n,2κ,j − Y
n,3
κ,j − Y

n,4
κ,j .

Next, from (5.17) we directly obtain

lim
n→∞

〈f , ζnκ,j〉 = 〈f , ζκ,j〉,

and thus, comparing limit of (5.12) with (5.1) and by the use of (5.6), (5.9) and
(5.17), we can conclude the following

lim
n→∞

ˆ
Ω

S(cn,Dvn) ·Dζnκ,j dx

= lim
n→∞

ˆ
Ω

Gn(|vn|2)(vn ⊗ vn) · ∇ζnκ,j dx

−
ˆ

Ω

(v ⊗ v) · ∇ζκ,j dx+

ˆ
Ω

S ·Dζκ,j dx =

ˆ
Ω

S ·Dζκ,j dx.

This together with (5.18) and (4.8) then gives

lim
n→∞

Y n,1κ,j =

ˆ
Ω

S ·
(
Dζκ,j +Dζ2

κ,j −∇ξκvj
)
dx.

Let us now investigate the second integral. Using boundedness of S(cn,Dvn) in
L(pn)′(·)(Ω)d×d, property (3.2) of the operator B, and zero divergence of vnj on

{x ∈ Ω : vn = vnj }, we can estimate Y n,2κ,j by the Hölder inequality (and by the

definition of the norm) as

Y n,2κ,j 6 C‖Dζ
n,1
κ,j‖pn(·) 6 C‖ div vnj χ{vn 6=vnj }‖pn(·) 6 C‖∇vnj χ{vn 6=vnj }‖pn(·)

6
C

2j/p+
,

where the last inequality follows from (4.13). For the last two integrals Y n,3κ,j and Y n,4κ,j
we use the convergence (5.8), boundedness of truncation Tκ and weak convergence
(4.9) to get

lim
n→∞

(
Y n,3κ,j + Y n,4κ,j

)
=

ˆ
Ω

ξκS · Tκ(Dv) dx+

ˆ
Ω

ξκS(c,Tκ(Dv)) · (Dvj − Tκ(Dv)) dx.
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All together then gives

lim
n→∞

(Y n,1κ,j + Y n,2κ,j − Y
n,3
κ,j − Y

n,4
κ,j )

6
ˆ

Ω

S · (Dζκ,j +Dζ2
κ,j −∇ξκvj − ξκTκ(Dv)) dx+

C

2j/p+

−
ˆ

Ω

ξκS(c,Tκ(Dv))(Dvj − Tκ(Dv)) dx

=

ˆ
Ω

ξκ(S − S(c,Tκ(Dv))) · (Dvj − Tκ(Dv)) dx−
ˆ

Ω

S ·Dζ1
κ,j dx+

C

2j/p+
.

Nevertheless, from the weak lower semicontinuity (see [5]) we also have

‖Dζ1
κ,j‖p(·) 6 lim sup

n→∞
‖Dζn,1κ,j‖pn(·) 6

C

2j/p+
,

and thus, we obtain

lim
n→∞

(Y n,1κ,j + Y n,2κ,j − Y
n,3
κ,j − Y

n,4
κ,j )

6
ˆ

Ω

ξκ(S − S(c,Tκ(Dv))) · (Dvj − Tκ(Dv)) dx+
C

2j/p+
.

Going back to (5.15), we can finally let j, n,κ →∞ and estimate

lim
κ→∞

lim
j→∞

lim
n→∞

(Jnκ + Inκ)

6 lim
κ→∞

lim
j→∞

lim
n→∞

(
C

(
Y n,1κ,j + Y n,2κ,j − Y

n,3
κ,j − Y

n,4
κ,j +

C(κ)

2j

)1
4

|Ω| 34 +
C√
κ

+
C

2j

)

6 lim
κ→∞

C

((ˆ
Ω

(S − S(c,Tκ(Dv))) · (Dv − Tκ(Dv)) dx

)1
4

+
C√
κ

)
= 0,

where we used point-wise convergence of Tκ(Dv)→Dv on Ω for κ →∞ and the
Lebesgue dominated convergence theorem. By that we have finished the proof of
the claimed (5.14).

5.2. Identification of S and qc. We start with identification of S. From previous
subsection we know that

lim
n→∞

ˆ
Ω

(
(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv)

)1
4

dx = 0,(5.19)

which, due to the positiveness of the argument, holds also for a set Qγ ⊂ Ω such
that

Qγ :=
{
x ∈ Ω : |Dv| 6 γ

}
,

where γ is arbitrary positive fixed constant. From the sequence of arguments of
integral (5.19), we can find a subsequence (again not relabeled) converging to zero
almost everywhere in Qγ . Then, according to Egoroff theorem, for arbitrary ε > 0,
we can find a set Qεγ ⊂ Ω which differs from Qγ by |Qγ \ Qεγ | < ε, on which the
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sequence of arguments converge uniformly. It is clear, that by the choice of Qεγ , we
have

lim
γ→∞

lim
ε→0
|Ω \Qεγ | = 0,

and additionally, from the uniform convergence, that

lim
n→∞

ˆ
Qεγ

(S(cn,Dvn)− S(cn,Dv)) · (Dvn −Dv) dx = 0.(5.20)

Here, due to boundedness of Dv on Qεγ we have S(cn,Dv) → S(c,Dv) strongly

in Lq(Ω)d×d for q <∞, and thus, together with the weak convergence of Dvn and
strong convergence of S(cn,Dv) in corresponding spaces, we obtain from (5.20)

lim
n→∞

ˆ
Qεγ

S(cn,Dvn) · (Dvn −Dv) dx = 0.

Hence, using (5.9), we can identify

lim
n→∞

ˆ
Qεγ

S(cn,Dvn) ·Dvn dx =

ˆ
Qεγ

S ·Dv dx.(5.21)

As a next step, we use the monotonicity assumption on S (1.4) guaranteeing the
sign of

0 6
ˆ
Qεγ

(S(cn,Dvn)− S(cn,B)) · (Dvn −B) dx,(5.22)

where B ∈ L∞(Qεγ)d×d is fixed but arbitrary. From (5.21) and the fact that

S(cn,B)→ S(c,B) strongly in Lq(Ω)d×d for q <∞, we can take the limit n→∞
in (5.22) and obtain

0 6 lim
n→∞

ˆ
Qεγ

(S(cn,Dvn)− S(cn,B)) · (Dvn −B) dx

=

ˆ
Qεγ

S · (Dv −B) dx−
ˆ
Qεγ

S(c,B) · (Dv −B) dx

=

ˆ
Qεγ

(S − S(c,B)) · (Dv −B) dx.

Choosing B = Dv ± λA(x) (λ > 0 and A ∈ L∞(Qεγ)d×d), we can due to the
continuity of S in B identify

S = S(c,Dv) a.e. on Qεγ .

To finish the proof, we extend this result on the whole domain Ω by letting ε→ 0
and then γ →∞. Consequently, using strict monotonicity (1.5), we conclude that
Dvn → Dv a.e. in Ω. By that, together with (5.7), we can identify qc, which
brings the proof of Theorem 1 to the end.
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