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Abstract

An easy-to-interpret kinematic quantity measuring the average corotation of material line segments
near a point is introduced and applied to vortex identification. At a given point, the vector of average
corotation of line segments is defined as the average of the instantaneous local rigid-body rotation over
‘all planar cross-sections’ passing through the examined point. The vortex identification method based
on average corotation is a one-parameter, region-type local method sensitive to the axial stretching rate
as well as to the inner configuration of the velocity gradient tensor. The method is derived from a
well-defined interpretation of the local flow kinematics to determine the ‘plane of swirling’ and is also
applicable to compressible and variable-density flows. Practical application to DNS data sets includes
a hairpin vortex of boundary-layer transition, the reconnection process of two Burgers vortices, a flow
around an inclined flat plate, and a flow around a revolving insect wing. The results agree well with
some popular local methods and perform better in regions of strong shearing.
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Nomenclature

Ma = Mach number
n = unit normal vector
nSWIRL = unit normal vector of the ‘plane of swirling’
Nϑ, Nϕ = number of discretization intervals for spherical-coordinate angles ϑ and ϕ,

respectively
p1, p2, p3 = strain-rate tensor principal axes
P = arbitrary point in the flow field
Q = orthogonal linear transformation, 3x3 rotation matrix
Q = second invariant of ∇u defined by (A.1), vortex-identification criterion
r, ϕ, ϑ = spherical coordinates
Re = Reynolds number
S = strain-rate tensor, symmetric part of ∇u
(sij)D = deviatoric strain-rate tensor in 2D
sD, |sD| = deviatoric principal strain-rate in 2D and its magnitude
u, ui = velocity vector
u, v, w = components of the velocity vector
VO, VN = overlapping and non-overlapping volumes of vortex region

x, x
′

= position vector, the same after orthogonal transformation
x0 = given position vector
x, y, z = coordinates

x
′
, y

′
, z

′
= new coordinates after orthogonal transformation

∇u, ∇̃u = velocity-gradient tensor, the same after orthogonal transformation
α = scaling factor in (12) and Appendix C
δ = angular step size
ϑi, ϕj = discretized spherical-coordinate angles ϑ and ϕ
∆ = vortex-identification discriminant defined by (A.2)
λci = swirling-strength, imaginary part of the complex conjugate eigenvalue of

∇u, vortex-identification criterion
λ2 = the second largest eigenvalue of S2 + Ω2, vortex-identification criterion, cf.

Appendix A
σ(0, 1) = sphere with center at origin and unit radius
ω = vorticity vector, ω = ∇× u
ω = vorticity tensor component in 2D
ωRAVG = average-corotation vector defined by (12) and (15), and approximated by

(16)
ωRES, ωRES = residual-vorticity vector defined by (11), residual-vorticity tensor component

in 2D defined by (10)
ωSH = shear vorticity defined (implicitly) by (10)
ωSAVG = average shear vorticity defined by (18)
Ω = vorticity tensor, antisymmetric part of ∇u
ΩAVERAGE = average angular velocity of line segments, according to Fig. 2
ΩLOW,ΩHIGH = extremal values of angular velocities of line segments, according to Fig. 2
∆Ω = difference of angular velocities of two instantaneously mutually orthogonal

line segments, according to Fig. 2

Subscripts and superscripts

, = subscript comma denoting differentiation (e.g. ui,j ≡ ∂ui/∂xj)
x, y, z = partial derivatives (e.g. ux ≡ ∂u/∂x)
T = transpose

Other symbols and special functions
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‖ . . . ‖ = absolute tensor value defined by Frobenius norm, ‖G‖ =
[
tr(GGT )

]1/2
sgn . . . = function returning ±1 according to the sign of the argument

1 Introduction

Various vortex-identification methods [1–22] have been proposed during the last three decades. The search
for efficient 3D vortex-identification schemes has become particularly important for the analysis of transi-
tional and turbulent flows, especially in the analysis of LES and DNS data sets. There is an extensive amount
of literature on vortex-identification techniques and their comparison, see Appendix A for a summary. Es-
sentially, most vortex-identification schemes can be classified either as a region-type method or a line-type
method. Without going into details, the objective of the line-type methods is to identify the vortex-core lines
instead of general spatial regions. The region-type and line-type methods may be effectively combined as
already shown in previous flow visualization studies [23–25]. A brief explanation of well-established methods
related to the present paper is also included in the Appendix A.

Although many of these methods are successful in vortex identification and provide valuable insight into
various vortical flows, none of them has become universally applicable to all possible flow situations due to
specific limitations. For example, the widely used λ2-method is valid for incompressible flows only [6, 8],
and it may cut a connected vortex into broken segments at locations with strong axial stretching [26]. In
addition, even for 2D flow cases, λ2-criterion becomes a shear-biased quantity at regions of high shear when
describing inner vortex structure [15]. However, it still remains much more powerful than the conventional
vorticity which cannot distinguish between pure shearing motions and the actual swirling motion of a vortex.

An advanced kinematic approach to characterization of local rigid-body like rotational motion is presented
below. It is based on (i) the notion of local corotation of material line segments at a point as defined on a
two-dimensional plane and (ii) the averaging process applied to ‘all planar cross-sections’ going through the
given point. This procedure gives an easy-to-interpret local (i.e. near a point) vortex intensity as a vector
which can be employed in 3D vortex identification.

The basic idea in the design of the proposed approach is to explicitly detect the effect of shear on vorticity
and to remove it. To this end, first the notion of local corotation of material line segments is introduced for an
arbitrary planar cross-section going through the given point in a 3D flow. Local corotation of line segments
near a point is closely related to the interpretation of the so-called residual vorticity in 2D [15] where different
components of vorticity characterize different components of local motion: shear vorticity is associated with
shearing motion, and residual vorticity—obtained after the elimination of shearing motion—is associated
with rigid-body rotation. Although such elimination is a favorable feature of vortex identification in general,
and the widely used methods achieve this goal rather satisfactorily, it is not an explicit requirement of their
design and derivation.

Some positive aspects of the direct elimination of local shearing motion has been recently discussed in
[27], where the swirling strength criterion (λci) [9] is compared to the residual vorticity [15]. In [27], the
authors analyzed cross-sections of vortices in turbulent flows, for which their method based on the residual
vorticity performed significantly better. The two-dimensional residual vorticity was also found to be a useful
tool for shear-layer analysis in [28].

While the residual vorticity is clearly defined by a simple formula in two dimensions, a straightforward
and simply computable extension to three-dimensional flows is not readily available. The definition of
three-dimensional residual vorticity presented within the triple-decomposition method in [15] uses the basic
reference frame (BRF), a special local coordinate system in which the effect of shear is most significant.
However, the search for BRF presents an optimization problem for each point in the domain, which makes
the triple-decomposition method computationally expensive. Although this issue can be resolved for example
by means of parallel computing (e.g. we describe the application of Graphics Processing Unit for this task
in [29]), it presents an obstacle for a straightforward practical applicability of the method.

Another approach to using the two-dimensional residual vorticity to analyzing three-dimensional flows
was recently presented in [30], where a maximum of residual vorticity was sought over all planes passing
through the considered point. While reducing the computational complexity of the BRF search by an order of
magnitude, this quantity turned out not to be suited well for vortex identification and provided a reasonable
agreement with the established methods only for regions with large intensity of vortical motion. The main
reason for the limited applicability of the so called maximum-corotation method is the unstable behavior of
the maxima, which can oscillate from point to point and can lead to uneven surfaces of identified structures.
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Moreover, the method is quite sensitive to numerical sampling of planes and for some specific velocity gradient
data, it may even suffer from ambiguity regarding the orientation of the maximum-corotation plane.

In this contribution, we present a third, by our opinion the most promising extension of the two-
dimensional residual vorticity to three dimensions. Instead of searching for maxima over all planes, we
use an averaging process, in which each plane is of equal significance and plays its role ‘independently of
other planes’. This allows defining the new quantity by integration over a unit sphere, which is in an im-
plementation evaluated by existing efficient quadrature rules, and thus presents almost no computational
overhead. The resulting new kinematic quantity, the average corotation of material line segments near a
point, provides a vector field suitable for 3D flow analysis. This shear-free rotational quantity provides an
alternative to the shear-biased vorticity vector ω = ∇× u by correcting it by the effect of shear. At points
where no shear is present, the new quantity just reproduces the vorticity field.

The magnitude of the resulting vector of average corotation is used for visualization of vortices in this
contribution. It is shown, that the new quantity provides an easy kinematic interpretation and useful
qualitative features, which are discussed in connection with widely used local methods (Q, ∆, λ2, and λci).
The proposed average-corotation method remains applicable to compressible and variable-density flows.

Four different flow situations, a hairpin vortex of boundary-layer transition, the reconnection process of
two Burgers vortices, a flow around an inclined flat plate, and a flow around a revolving insect wing are
analyzed in terms of the average corotation. DNS data sets for the first two flow situations have been provided
by IAG, University of Stuttgart. The identified structures are generally in a very good agreement with the
existing methods. However, the average corotation seems to better distinguish between local shearing motion
and local rigid body rotation (due to swirling motion) in regions of dominant shear, such as ‘vortex sheets’.

2 Local Corotation of Material Line Segments in a Plane

The first step is the pointwise analysis of the flow on an arbitrary planar cross-section passing through an
examined point in a three-dimensional velocity field. Restriction to the plane allows the use of the two-
dimensional analysis developed in [15], which is recalled in this section. The averaging process for obtaining
the final three-dimensional quantity is presented in the next section.

The relative motion near a point where all three velocity components are zero (i.e. near a so-called critical
point) can be described by the leading linear terms of a Taylor series expansion of the velocity field in terms
of space coordinates (see Chong et al. [4]). The coefficients of the leading linear terms are just elements of
the velocity-gradient tensor ∇u.

Let us select a plane going through a point x0 with the normal vector n. We can introduce a new
coordinate system (x′, y′, z′) with the z′-axis aligned with n, and axes x′ and y′ arbitrarily oriented in the
plane. Denoting Q the orthogonal transformation matrix between the two frames, i.e. x′ = Qx, the velocity
gradient transformed to the new coordinate system is given as

∇̃u = Q(∇u)QT . (1)

To analyze the flow behavior on the two-dimensional cross-section aligned with the x′y′-plane, it is sufficient
to look at the leading 2×2 submatrix of ∇̃u.

In general, the 2×2 submatrix (
ux uy
vx vy

)
(2)

is associated with a standard two-dimensional velocity gradient, where now x,y and u,v refer to 2D coordi-
nates and velocity components, respectively, and the subscripts stand for partial derivatives. The infinitesimal
velocity contributions due to the linearization near a reference point are in Fig. 1 explicitly stated by the
arrows associated with the rotational motion in 2D near a point P . Apparently, these velocity contributions
are ‘attached’ to the instantaneous infinitesimal line segments passing through the reference point. Figure 2
focuses on the rotation of these line segments which, at a given instant of time, rotate at generally different
angular speeds (positive counterclockwise orientation). These angular velocities can be inferred from the
leading linear terms, explicitly shown in Fig. 1, by the elementary relationship between the angular and
the tangential velocity. Vorticity, expressing an average angular velocity of fluid elements, is represented in
Fig. 2 by the average angular velocity of all line segments and denoted ΩAVERAGE. However, it is well known
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Figure 1: Local flow patterns of deviatoric motion near a point (according to [15]): Dashed line segments
are associated with the instantaneous extremal angular velocities found over all line segments going through
a point P .
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|ΩHIGH| − |ΩLOW| > 0 for both cases
(i.e. corotation and contrarotation)
         ⇒ shearing motion
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         ⇒ rigid-body rotation
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         ⇒ elongation / contraction

Figure 2: Corotation of line segments: The residual vorticity is shown in terms of the least-absolute-value
angular velocity.
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that this quantity cannot distinguish between shearing motions and the actual swirling motion of a vortex
and misrepresents vortex geometry.

The planar residual vorticity obtained after the removal of shearing motion is the least-absolute-value
angular velocity of all the infinitesimal line segments passing through the given point, see Fig. 2. This quantity
represents nothing but a measure of the instantaneous local rigid-body rotation found on the selected planar
cross-section (see also Appendix B).

As can be inferred from Fig. 2, the planar residual vorticity—a measure of the local rigid-body rotation—is
nonzero only if all of the line segments corotate. Local corotation is then quantified just in terms of the planar
residual vorticity. The quantity ΩAVERAGE in Fig. 2 represents the conventional vorticity ω, while ΩHIGH

and ΩLOW stand for the extremal values of angular velocity (including sign!) found over all line segments
going through point P . The extremal angular velocities ΩHIGH and ΩLOW are defined by the requirements
framed in Fig. 2. The local flow patterns shown in Fig. 1 hold for a planar deviatoric motion which is
sufficient for the corotation considerations on an arbitrary planar cross-section in 3D flow. To quantify the
local corotation, the planar residual vorticity ωRES is employed. As mentioned above, this is interpreted in
terms of the least-absolute-value angular velocity of all infinitesimal line segments (subsets of the plane) near
a point, passing through the given point. The relevant quantities necessary for the determination of ωRES

are the vorticity ω and the planar deviatoric (i.e. traceless) principal strain-rate magnitude |sD|.
For a general non-deviatoric 2×2 submatrix (2), the planar deviatoric strain-rate tensor (sij)D is obtained

from the symmetric part by subtracting half of the trace from diagonal entries,

(sij)D =

(
ux − (ux + vy)/2 (uy + vx)/2

(uy + vx)/2 vy − (ux + vy)/2

)
. (3)

In the system of principal axes, tensor (sij)D corresponds to the diagonal matrix

(
sD 0
0 −sD

)
=

±(√(ux − vy)2 + (uy + vx)2
)
/2 0

0 ∓
(√

(ux − vy)2 + (uy + vx)2
)
/2

 , (4)

and so

|sD| =
(√

(ux − vy)2 + (uy + vx)2
)
/2. (5)

Vorticity ω and planar deviatoric principal strain-rate magnitude |sD| can be unambiguously expressed
in terms of angular velocities near the point depicted in Fig. 2. First,

ω = (vx − uy)/2 = (ΩHIGH + ΩLOW)/2 = ΩAVERAGE. (6)

For the corotation case, where vorticity dominates over deviatoric strain rate (|ω| > |sD|),

|sD| = (|ΩHIGH| − |ΩLOW|)/2. (7)

Alternatively, for the contrarotation case, where deviatoric strain rate dominates over vorticity (|ω| < |sD|),

|sD| = (|ΩHIGH|+ |ΩLOW|)/2. (8)

Finally, for pure shearing (|ω| = |sD|, ΩLOW = 0),

|sD| = |ΩHIGH|/2. (9)

The key quantity of the corotation approach, the residual vorticity ωRES, reads ([15], for details see
Appendix B)

ωRES =

{
ω − ωSH = (sgn ω)(|ω| − |sD|) = ΩLOW for |ω| ≥ |sD|,
0 for |ω| ≤ |sD|,

(10)

where ωSH stands for the vorticity due to shear.
As follows from (3)–(6), uniform dilatation (or contraction) appearing through the 2×2 submatrix of the

velocity gradient tensor and given on the examined plane by (ux + vy)/2, i.e. by half of the trace of the
submatrix, affects neither the shape nor the rotational characteristics |sD| and ω. Consequently, it does
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not affect our corotation measure, the residual vorticity ωRES. That is why a planar deviatoric motion is
sufficient for the present procedure.

Let us now turn back to the general 3D setting and the original coordinate system. The planar local
corotation has vector character, with direction of the normal of the examined plane n and magnitude 2ωRES,
where ωRES is given by (10). The factor 2 is related to using 1

2 in the expression for the two-dimensional
vorticity tensor component in (6). As a function of both the selected point x0 and the orientation of the
plane normal n, the local corotation vector is expressed in 3D as

ωRES(x0,n) = 2ωRESn. (11)

3 Determination of Average Corotation

The determination of average corotation is a pointwise procedure. For a given position vector x0 the averaging
procedure is applied over ‘all planar cross-sections’. A convenient way to formalize and compute the average
corotation is based on surface integration. Keeping in mind the key role of a normal n in the present averaging
process, the set of all planes going through the given point can be redefined as the set of all tangential planes
of a unit sphere σ(0, 1). Consequently, the average-corotation vector at x0 is defined as

ωRAVG(x0) = α

∫∫
σ(0,1)

ωRES(x0,n)dσ∫∫
σ(0,1)

dσ
=

α

4π

∫∫
σ(0,1)

ωRES(x0,n)dσ, (12)

where α ∈ R is a scaling factor. A natural choice α = 3 is derived in Appendix C.
A considerable amount of research has been devoted to efficient numerical evaluation of surface integrals

over the unit sphere such as (12), see e.g. [31], [32], or an overview paper [33]. While these methods can lead
to very fast evaluation of average corotation, they are somewhat complicated and technical. For the purpose
of the present paper, the basic rectangle integration scheme is employed further. However, suitability of
some more advanced schemes is briefly discussed at the end of Section 6.

It should be noted that (12) is not a surface integral of a vector-valued function as is well known e.g. from
continuum mechanics. Instead, (12) presents three independent surface integrals of scalar functions, one for
each component of the average corotation. Also note, that no temporal or spatial averaging is involved in
the procedure in (12).

Using the spherical coordinates r, ϕ, ϑ, and

x1 = r sinϑ cosϕ, x2 = r sinϑ sinϕ, x3 = r cosϑ, (13)

the surface element on a unit sphere with r = 1 can be expressed as

dσ = sinϑ dϑ dϕ. (14)

For ϕ ∈ [0, 2π], ϑ ∈ [0, π], the surface integral in (12) can be transformed using Fubini’s theorem into a
double integral

ωRAVG(x0) =
α

4π

2π∫
0

π∫
0

ωRES(x0,n(ϕ, ϑ)) sinϑ dϑ dϕ. (15)

The integral (15) is evaluated numerically by subdividing the domain [0, 2π] × [0, π] into squares with the
size δ so that the number of intervals is Nϕ = 2π/δ and Nϑ = π/δ. For each of these squares, the normal
n ≡ n(ϕ, ϑ) and the corresponding ωRES(x0,n(ϕ, ϑ)) are approximated as constant vectors. The final
expression of average-corotation vector employed for further calculations reads

ωRAVG(x0) ≈ α

4π

Nϕ∑
j=1

Nϑ∑
i=1

ωRES(x0,n(ϕj , ϑi)) sinϑiδ
2. (16)

8



The average-corotation vector ωRAVG can be expressed in terms of its magnitude |ωRAVG| and direction—
denoted nSWIRL since it defines the resulting ‘plane of swirling’—as functions of the only independent
variable, a position x0 in 3D flow field, as

ωRAVG(x0) = |ωRAVG(x0)|nSWIRL(x0). (17)

Note that the present average-corotation method and the earlier maximum-corotation method [30] (also
shown below), which is based on the maximum corotation found over ‘all planar cross-sections’, are similar
in that they both search over ‘all planes’ given by the normal n ≡ n(ϕ, ϑ) on the domain [0, 2π] × [0, π].
Consequently, both methods lead to a very similar computational cost. However, a significant advantage of
the average-corotation method over the maximum-corotation method consists in the applicability of more
efficient integration schemes.

It should be emphasized that the averaging procedure introduced in the present paper represents in fact
a normalized additive process by adding information ‘planar cross-section by planar cross-section’ to account
properly for a full 3D kinematic picture near a point. One selected planar information, even though choosing
the maximum-corotation plane, degenerates the overall kinematic information and the local flow behavior
near a point cannot be taken in a truly 3D representative manner.

4 Applications of Average Corotation to Vortex Identification

Four different flow situations are considered: a hairpin vortex of boundary-layer transition, the reconnection
process of two Burgers vortices, a flow around an impulsively started flat plate at an angle of attack of 30◦,
and a flow around a revolving insect wing. These flows are examined in terms of average corotation. For
comparison purposes, the popular λ2-criterion and the maximum-corotation method are evaluated simulta-
neously with the average-corotation method for the first two applications. The third application is focused
on the shearing bias in vortex identification and compares the average-corotation method with λ2-criterion
and Q-criterion (for definitions see Appendix A). The fourth application further extends the study of the
bias due to shearing.

Hairpin vortex of boundary-layer transition

Boundary-layer transition belongs to basic flow problems associated with distinct vortical structures. The
examined DNS data set deals with numerical simulation of wind-tunnel experiments using controlled distur-
bance excitation with frequency = 62.5Hz at Re [based on the displacement thickness] = 730, according to
[34]. Figure 3 shows a single representative hairpin vortex formed during this transition process in terms of
different criteria. We present the detected vortical structures by plotting isosurfaces at an increasing value of
the magnitude of average corotation. This value is called threshold and reported in percents of the maxima
over the domain (minima for λ2).

To provide a comparable plot for different methods, the following matching procedure is performed. After
choosing a threshold for |ωRAVG|, we find corresponding thresholds for the other methods by minimizing the
characteristic ratio VN/VO over all possible thresholds. Here, VN corresponds to the volume where methods
do not overlap in terms of vortex regions (i.e. one method detects a vortex while the other does not) and
VO denotes the overlapping volume where both methods detect a vortex region.

Figure 3 indicates a close resemblance of the average-corotation results with λ2-method for λ2-threshold
of 2.6% and higher, while identifying slightly different structure at the lowest threshold. On the other hand,
the maximum-corotation scheme is apparently less satisfactory, with the exception of the highest threshold.

Reconnection process of two Burgers vortices

The second application deals with the subsonic DNS data sets for the reconnection process of two Burgers
vortices at Ma=0.3 and Ma=0.8, at Re [≡circulation/kinematic viscosity] = 10000. The mutual matching
of plots in Figs. 4 and 5 is also performed for fixed average-corotation thresholds followed by minimizing of
the characteristic ratio VN/VO over all possible thresholds.

As shown in Figs. 4 and 5, the mutual similarity of results for all three methods is very good, especially
in the way how the three different methods indicate the vortical substructures of connecting ribs of the
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λ2-method average corotation maximum corotation

Figure 3: The results for a hairpin vortex at four different relative thresholds for each of the following
methods: λ2-method (left, threshold: 0.6%, 2.6%, 6.9%, 15.2%), average-corotation method (center, thresh-
old: 2.7%, 10.0%, 17.6%, 30.6%), and maximum-corotation method (right, threshold: 9.0%, 16.8%, 29.1%,
35.9%).
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Table 1: The absolute values of threshold for individual methods in Figs. 7 and 8, and the lowest relative
non-overlap VN/VO achieved by the matching procedure (in parentheses). The non-overlapping volume VN
corresponds to the sum of all regions where only one criterion detects a vortex, while the overlapping volume
VO corresponds to the sum of all regions where both criteria detect a vortex. Smaller value of VN/VO
corresponds to better agreement.

Re λ2 Q |ωRAVG|
300 -2.0 2.01 (0.08) 2.02 (0.72)
1200 -2.0 2.29 (0.24) 1.73 (0.36)

reconnection process. However, we are aware, that the applicability of the λ2-criterion to compressible flows
at higher Mach numbers is questionable [8].

Flow around a flat plate at an angle of attack

The investigated data sets describe the impulsively started incompressible flow around a flat plate (aspect
ratio 2) at an angle of attack of 30◦ solved numerically for Reynolds numbers Re=300 and Re=1200. The re-
sults are shown in Figs. 6–8. This application aims to illustrate how the average-corotation scheme compares
with the λ2-method. Using two different thresholds for λ2, Figure 6 demonstrates that the average-corotation
method is able to capture more universally the vortical structures both in close proximity of the plate and
in the wake downstream. In particular, should vortical structures downstream in the wake obtained by a
selected value of |ωRAVG| be identified by the λ2-criterion, a lower threshold of λ2 is needed, and undesirable
shearing zones around the plate edges appear. By taking a higher threshold value to diminish the shearing
zones, the relevant downstream vortices disappear completely. This observation holds for both Reynolds
numbers under consideration.

In addition, Figure 7 shows a similar situation including the widely used Q-criterion. In Fig. 7, we plot
the isosurfaces of λ2 = −2, and isosurfaces of the Q-criterion and average corotation determined by volume
matching procedure described in the previous section, namely minimizing the relative non-overlap VN/VO.
The values of resulting thresholds and corresponding values of VN/VO are summarized in Table 1. Note that
VN/VO provides a measure of the quality of the match, with lower values corresponding to better agreement.

The results by the Q-criterion are very similar to those by λ2-method, especially for Re=300. Hence,
a similar shearing bias in vortex identification appears. To capture the vortical structures in the wake
downstream, both the Q-criterion and the λ2-criterion cannot avoid the bias in terms of showing shearing
zones around the plate edges as vortex zones. These results are in a good agreement with [35], where
the same flow situation was analyzed by means of the earlier (and much more computationally expensive)
triple-decomposition method [15].

To indicate the role of shearing motion in the proximity of the plate, we introduce the vector of average
shear vorticity ωSAVG simply as the difference between the vorticity vector ω and the average corotation
ωRAVG,

ωSAVG = ω − ωRAVG. (18)

The same quantity could be also obtained by the averaging procedure analogous to (12) applied to ωSH =
2ωSHn in place of ωRES, where ωSH is the planar shear vorticity defined implicitly in (10). Selected isosurfaces
of the magnitude of ωSAVG are depicted along the results by λ2-criterion and ωRAVG in Fig. 8. The thresholds
for λ2 and ωRAVG are the same as in Fig. 7. It can be seen, that behind the plate edges, the vortex structures
identified by the λ2-criterion resemble the structure of the shearing zones, unlike the results by ωRAVG. The
fact that |ωSAVG| is significant also inside the vortex regions farther downstream can be attributed to shearing
of inner (‘concentric cylindrical’) vortex layers.

Flow around a revolving insect wing

The final analyzed data set comprises a model of a wing of a fruit fly (Drosophila), which revolves in a
propeller-like motion. The angle of attack is fixed to 40◦ and the Reynolds number [based on the velocity
of the tip of the wing] Re=500. The vortex structure behind the wing at the end of the first revolution is
examined. The whole structure is dominated by the spiralling tip vortex, enclosed by the starting leading-
edge and trailing-edge vortices, and by a weaker vortex near the root of the wing.
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λ2-method average corotation maximum corotation

Figure 4: The results for a reconnection of Burgers vortices, Ma=0.3, at three different relative thresholds for
each of the following methods: λ2-method (left, threshold: 0.1%, 4.6%, 23.1%), average-corotation method
(center, threshold: 0.8%, 13.9%, 47.5%), and maximum-corotation method (right, threshold: 6.1%, 17.0%,
47.7%).
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λ2-method average corotation maximum corotation

Figure 5: The results for a reconnection of Burgers vortices, Ma=0.8, at three different relative thresholds for
each of the following methods: λ2-criterion (left, threshold: 0.1%, 6.1%, 24.6%), average-corotation method
(center, threshold: 2.9%, 15.4%, 46.3%), and maximum-corotation method (right, threshold: 10.1%, 19.4%,
46.7%).
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Re=300
λ2-method (0.07%) λ2-method (0.19%) average corotation (3.6%)

Re=1200
λ2-method (0.28%) λ2-method (0.77%) average corotation (4.84%)

Figure 6: Results for the flow around a flat plate at an angle of attack of 30◦ revealing a shearing bias of
the λ2-criterion near the plate edges. The corresponding thresholds are shown in parentheses.
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Re=300
λ2-method (0.10%) Q-method (0.08%) average corotation (4.0%)

Re=1200
λ2-method (0.19%) Q-method (0.10%) average corotation (4.2%)

Figure 7: Results for the flow around a flat plate at an angle of attack of 30◦ revealing a shearing bias of the
Q-criterion near the plate edges. The corresponding thresholds are shown in parentheses and in Table 1.
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Re=300
λ2-method (0.10%) average shear vorticity (3.9%) average corotation (4.0%)

Re=1200
λ2-method (0.19%) average shear vorticity (6.3%) average corotation (4.2%)

Figure 8: Magnitude of average shear vorticity |ωSAVG| for the flow around a flat plate at an angle of
attack of 30◦ studying the effect of shearing motion on λ2-criterion in the vicinity of the plate edges. The
corresponding thresholds are shown in parentheses and in Table 1.
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Table 2: The absolute values of threshold for individual methods in Figs. 9 and 10, and the lowest relative
non-overlap VN/VO achieved by the matching procedure (in parentheses).

Figure 9 Figure 10
match to λ2 match to |ωRAVG|

λ2 |ωSAVG| |ωRAVG| |ωRAVG| |ωSAVG| λ2
-2.0 5.53 (0.39) 1.88 (0.26) 1.88 5.97 (0.54) -2.05 (0.26)
-4.0 7.54 (0.36) 2.69 (0.36) 2.69 7.42 (0.74) -3.93 (0.36)
-8.0 10.45 (0.46) 3.93 (0.56) 3.93 10.12 (1.07) -7.40 (0.54)
-16.0 14.89 (0.64) 5.82 (0.83) 5.82 14.45 (1.78) -15.53 (0.77)
-32.0 20.72 (0.92) 7.96 (1.52) 7.96 19.03 (3.11) -29.92 (1.47)

The results are shown in Figs. 9 and 10. In the former, five increasing values of threshold are chosen
to study the structures identified by the λ2-method. Next to the surfaces by λ2, we plot isosurfaces by the
magnitude of ωSAVG and by the magnitude of average corotation ωRAVG. The thresholds for these methods
were determined again by the volume-matching procedure minimizing the VN/VO ratio.

As a benchmark for the objectivity of the used matching procedure, we perform also a ‘dual’ matching,
based on the previously determined values of |ωRAVG|. Note, that the matching procedure is not precisely
symmetric in the sense that we would recover the original thresholds of λ2 in this way. The results of this
experiment are presented in Fig. 10.

Table 2 summarizes the absolute thresholds and, more importantly, the VN/VO ratios achieved by the
matching procedure used for generation of Figs. 9 and 10. While it is natural to match vortex identification
methods, i.e. ωRAVG and λ2, we have decided to include also the average-shear approach into the comparison
through this matching procedure. The observation that |ωSAVG| can, for certain thresholds, detect similar
regions as vortex identification criteria, including reasonable VN/VO ratios, reflects the fact, that a lot of
vorticity in the vortex structures corresponds to shearing motion of its inner layers.

Rather than focusing on horizontal comparisons only, one should view Figs. 9 and 10 also in vertical
direction to observe the trends for the individual methods with increasing threshold. Perhaps the most
interesting zone in this respect is just behind the sharp tip of the wing, where high shear zone is expected.
It can be noticed, that a large portion of this zone is not present in the structure identified by average-
corotation method, even for the lowest threshold. We can also observe, that with an increasing threshold,
the structures by |ωSAVG|, which correspond to high shear zones, are closer to structures by λ2-method than
to those by |ωRAVG|. This can be concluded not only from visual appearance in Figs. 9 and 10, but also
quantified by the value of the smallest achieved relative non-overlap VN/VO in Table 2.

We can summarize the results of this experiment so that the structures identified by λ2-method are
matching well the results by average-corotation method farther from the wing, while they tend to incorporate
some of the shear-based vorticity near the edges of the wing, independently of the selected threshold. With
increasing threshold, the achievable match of |ωSAVG| to λ2 is much better than that of |ωSAVG| to |ωRAVG|
(Table 2), and the structures by λ2 tend to resemble those by |ωSAVG| also visually. It should be recalled
though, that the physical threshold for λ2-method is λ2 = 0, and that the method is not meant to be used
with high thresholds. However, the isosurface for λ2 = 0 is so complex for this problem, that the vizualization
tool (Tecplot 360 2010) was not able to construct it on the given mesh, and we start from the lowest value
found to give meaningful results in Fig. 9 and Table 2.

5 Discussion on Qualitative Features

Recall some qualitative features of the average-corotation scheme in the context of well-established local
methods Q,∆, λ2, and λci (see Appendix A). All of the given methods are based on the analysis of ∇u. A
mutual geometrical configuration of symmetric and antisymmetric parts of ∇u is schematically depicted in
Fig. 11 (the ellipsoid is just one chosen representation of strain-rate quadrics).

Let us assume that all the length magnitudes in Fig. 11 are fixed while the vorticity vector can arbitrarily
rotate with respect to the ellipsoid given by principal axes of the strain-rate tensor and its eigenvalues.
The Q-criterion representing the balance between vorticity magnitude and the strain-rate magnitude is
clearly (∇u)-configuration-independent, i.e. it gives the same value regardless of the orientation of the
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λ2-method average shear vorticity average corotation

Figure 9: Results for the flow around a revolving (propeller-like motion around y-axis) model of a wing of
Drosophila at an angle of attack of 40◦ and Re=500. Vortex structure for increasing threshold identified
by λ2-criterion (left, threshold: 0.04%, 0.08%, 0.17%, 0.34%, 0.67%), by magnitude of average shear vor-
ticity |ωSAVG| (center, threshold: 2.0%, 2.7%, 3.7%, 5.3%, 7.4%), and by average-corotation method (right,
threshold: 1.5%, 2.1%, 3.1%, 4.5%, 6.2%).
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average corotation average shear vorticity λ2-method

Figure 10: Results for the flow around a revolving (propeller-like motion around y-axis) model of a wing of
Drosophila at an angle of attack of 40◦ and Re=500. Vortex structure for increasing threshold identified by
average-corotation method (left, threshold: 1.5%, 2.1%, 3.1%, 4.5%, 6.2%), by magnitude of average shear
vorticity |ωSAVG| (center, threshold: 2.1%, 2.7%, 3.6%, 5.2%, 6.8%), and by λ2-criterion (right, threshold:
0.04%, 0.08%, 0.16%, 0.33%, 0.63%).
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Figure 11: Geometrical configuration of the symmetric part (p1, p2, and p3 are strain-rate principal axes)
and antisymmetric part (depicted in terms of vorticity vector) of the velocity-gradient tensor ∇u.

vorticity vector with respect to the quadric. This fact somewhat lowers its physical value. For example, this
insensitivity results in the fact that the following two local flow situations are—from the vortex-identification
viewpoint in terms of Q-criterion—evaluated as identical, i.e. the value of Q is the same for both cases

−a 0 b
0 2a 0
−b 0 −a

 vs.

−a b 0
−b 2a 0
0 0 −a

 , (19)

where a and b are positive real numbers. In the first case of local uniaxial isochoric stretching (coupled with
uniform radial contraction), the vorticity vector is aligned with the stretching axis, while in the second case
of the same stretching situation the vorticity vector is aligned with one of the contracting axes in the plane
perpendicular to the stretching axis. As expected, the values of the average-corotation magnitude |ωRAVG|
and the swirling strength λci are for these two different configurations of ∇u significantly different in general
(depending on the choice of values a and b in (19)). Both these measures of local vortex intensity (or
swirling rate) are, similarly as the quantities ∆ and λ2, (∇u)-configuration-dependent and hence physically
more sound.

Unlike the Q-criterion and ∆-criterion (inferred from the invariants of ∇u) and the λ2-criterion (formu-
lated on dynamic considerations), the measures λci and ωRAVG possess a clear kinematic interpretation of
the local swirling motion. Moreover, the criteria λci and ωRAVG are, unlike the schemes Q,∆, and λ2, poten-
tially able to determine a representative ‘plane of swirling’ due to their inherent well-defined flow kinematics
(although not employed in the present paper for ωRAVG).

Let us recall the interesting yet controversial idea of the vortex-identification requirement of allowance for
an arbitrary axial strain rate. In [26], an analytical diagnosis of four local region-type vortex-identification
criteria is performed, demonstrated on the Burgers and Sullivan vortices. It indicates that the Q-criterion and
λ2-criterion may cut a connected vortex into broken segments at locations with strong axial stretching. The
authors emphasize the following vortex-identification requirements: a generally applicable vortex definition
should be able to identify the vortex axis and allow for an arbitrary axial strain. The swirling-strength
λci-criterion based on the ∆-criterion, was further enhanced in [12]. The allowance for an arbitrary axial
strain rate from [26] became a subject of an intensive debate in [36, 37], as this requirement basically does
not conform to the orbital compactness proposed in [12]. For an incompressible flow, the axial strain rate
is directly related to the spiraling compactness [12, 36]. According to [12, 36], the spiraling compactness
requires an appropriate threshold dictated by the length and time scales of the given problem for vortex-
identification purpose. Following [37], however, adding a threshold value to the local axial strain rate or to
the orbital compactness is subjective and cannot be rationalized. A recent discussion of this issue for the
problem of a transitional boundary layer can be found in [38].

According to the previous paragraph, another aspect which is worth paying attention is the stretching
sensitivity of the swirling rate, that is, the sensitivity of the local swirling rate to the local stretching rate in
the direction perpendicular to the ‘plane of swirling’. In the following, the first tensor structure of (19) is to
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Figure 12: Dependence of various vortex identification criteria on relative stretching rate. Positive values
correspond to vortex region.

be analyzed for a fixed value of b and a wide range of a in terms of different vortex-identification schemes.
The results for the criteria λ2, Q, λci and ωRAVG are shown in Fig. 12 as functions of the relative stretching
rate a/b. All the results in Fig. 12 are normalized by the corresponding value for the case of zero stretching
rate, and only positive values identify a vortex region.

For increasing stretching intensity, the criteria Q and λ2 soon reach negative values indicating that the
examined point does not qualify as a vortex (as usual, the Q-criterion is more strict than λ2-criterion as shown
in [6]). On the other hand, the λci-criterion (which is based on the ∆-criterion) is not stretching-sensitive
and allows, similarly as the Q2D-criterion [26] or the maximum-corotation scheme [30], for an arbitrary
axial strain rate. In [12] an enhancement of the λci-criterion is introduced, namely a two-parameter scheme
for vortex identification, with the second parameter dealing with spiraling compactness of material orbits.
As a result, two or three positive thresholds are applied, one for the swirling rate λci to be above a certain
minimum value, and the other one or two to restrict a relative axial-stretching rate (which may be positive for
outward spiraling and negative for inward spiraling). Figure 12 indicates that the proposed swirling intensity
ωRAVG is stretching sensitive, tending asymptotically to zero value for higher stretching rates. Hence, the
quantity ωRAVG provides a one-parameter stretching-sensitive vortex intensity. However, similarly as the
schemes Q,∆, and λ2, it does not distinguish between inward and outward spiraling motion what can be
determined by the two-parameter scheme [12].

Using the magnitude of the average-corotation vector for vortex identification in general 3D rotational
flows requires a positive (yet low) threshold. The physical reason is as follows: in general 3D rotational
flows (with the exception of degenerate cases of 2D nature), there exists at least one plane (or a limited
bunch of planes) going through the given point, in which non-zero corotation can be detected. However,
while almost all planes going through the examined point exhibit non-zero conventional vorticity in a typical
non-vortex region, the residual vorticity turns out to be zero at almost all planes. Consequently, a low
threshold applied to |ωRAVG| is sufficient to suppress such regions in vortex visualization. In addition, recall
that for visualization purposes, a non-zero threshold is often employed also for the widely used local criteria,
as the vortex surface with a positive threshold appears significantly smoother [9].

Finally, let us mention the issue of smoothness of vortical structures identified by the maximum-corotation
approach [30]. From the spatial viewpoint, the plane of maximum corotation may change abruptly, or it
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Figure 13: Convergence analysis: Comparison of relative maximum values for both average- and maximum-
corotation criteria normalized by the maximum values for one-degree resolution; for angular step 1–45 degrees
(left), and detail for 1-20 degrees (right), ‘h. v.’ stands for a hairpin vortex, ‘B. v.’ for Burgers vortices.

may become even ambiguous for some velocity gradient data, hence its normal direction necessary for vector
representation of the residual vorticity ωRES according to (11) may change abruptly as well. As can be seen
in Fig. 3, this may lead to a reasonable agreement of maximum-corotation scheme with the other methods
only for higher thresholds. In contrast to the maximum corotation, the averaging procedure enhances the
pointwise stability of the average corotation ωRAVG, which in turn leads to significantly smoother surfaces
of identified vortical structures. In addition, average corotation provides a unique vector for any input data.
For this reason, it is better suited for visualization purposes.

6 Discussion on Numerical Precision

The average corotation ωRAVG, according to formula (12), is evaluated by means of numerical integration.
Therefore, a new important aspect emerges, namely the sensitivity to the numerical precision of the quadra-
ture formula.

Let us now analyze the precision of the simple rectangle quadrature (16). Discretizing the domain
[0, 2π]×[0, π] into squares with angular step size δ, the dependence of ωRAVG on the discretization parameter δ
is investigated. The same sampling is also employed for calculating the maximum corotation for comparison.

The ωRAVG-method behaves as a robust scheme while increasing the angular step starting with the finest
(here δ = π/180 = 1◦) resolution. Figure 13 shows maximum values of |ωRAVG|, found over the whole domain
and normalized by the maximum values for one-degree resolution, using different angular step sizes. For
comparison purposes the maximum-corotation results are included. The six curves in Fig. 13 illustrate the
two corotation methods for three flow situations from Section 4. In the right part of Fig. 13, a more detailed
view focussing on the region up to the angular step of 20◦ is shown. Figure 13 confirms the convergence
behavior for a decreasing angular step.

Figure 14 depicts normalized maximum differences found over the whole domain, that is, by examining
point by point the difference between ‘one-degree’ values and lower-resolution values, normalizing each
difference by the overall maximum found for the finest one-degree resolution. As before, the right part of
Fig. 14 provides a more detailed view up to the angular step of 20◦. For the angular step 20◦ and less, the
overall relative maximum difference is less (or much less) than one percent for all examined flow situations.

The following conclusion can be drawn: the average-corotation scheme tends to converge smoothly in a
very fast and stable manner. This is not surprising as (16) represents a numerical integration method with
first-order accuracy in each dimension. When a uniform refinement of the step size is performed in both
angular coordinates, we have a scheme with quadratic order of convergence to the exact value of the integral
(15), as can be clearly seen in Figs. 13–14. In addition, the robustness of the average-corotation method in
the case of a hairpin vortex is illustrated in Fig. 15 in terms of isosurfaces determined at a fixed threshold
using different angular step sizes.

Summing up, the observed robustness is very good and allows the use of a relatively large step size.
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Figure 14: Normalized difference with respect to value for angular step size 1 degree: maximum values over
the whole domain for both average and maximum-corotation criteria normalized by the maximum values for
one-degree resolution; for angular step 1–45 degrees (left), and detail for 1-20 degrees (right), ‘h. v.’ stands
for a hairpin vortex, ‘B. v.’ for Burgers vortices.

For example, the angular step size of 10◦ appears to be sufficient for practical computations. This may
be important, because the time needed for numerical integration using the finest tested resolution (one
degree) may be considerably larger than for the standard methods. However, in our experience, already
using an angular step size of 5◦ was found to present only little overhead compared to other parts of a flow
field solution. To provide some idea on computing times, on an Intel Core Duo CPU with 2.53 GHz, the
computing time per one data point was 0.076 milliseconds for the angular step size 10◦, while for step size
1◦, 7.714 milliseconds were needed. This agrees well with the expected scaling, since going from 10◦ to 1◦,
the computation requires 102 times more evaluations inside the sum of (16), making in turn the evaluation
proportionally more expensive.

In comparison, using Fibonacci integration from [32] with 752 integration points led to accuracy compa-
rable to rectangle rule with 1◦ resolution (i.e. 64,800 points), requiring only 0.2 milliseconds for each point.
Based on our experience, this method can be recommended for accelerating the evaluation of the average
corotation. On the other hand, while being even faster, the scheme from [31] using only 122 points did not
provide sufficient accuracy for our problems.

7 Conclusions

An easy-to-interpret kinematic quantity of local vortex intensity is introduced. The measure is pointwise
and based on the velocity-gradient tensor ∇u like many popular local methods (Q,∆, λ2, and λci). The
proposed quantity, the average corotation of material line segments near a point ωRAVG given by (12), is a
vector obtained by averaging the instantaneous local rigid-body rotation over ‘all planar cross-sections’ going
through the considered point. On a selected plane, the rigid-body rotation is quantified by residual vorticity
obtained after the elimination of shearing motion near a point on the given plane. At points with zero strain
rate, the average corotation just reproduces the vector of conventional vorticity. At points where strain
rate is present, the vector of average corotation represents the portion of vorticity that can be attributed to
rigid-body rotation.

Practical applications of ωRAVG in vortex identification for a hairpin vortex of boundary-layer transition,
the reconnection process of two Burgers vortices, a flow around a flat plate at an angle of attack of 30◦, and
a flow around a revolving insect wing are presented. The ωRAVG-criterion provides a high level of agreement
with the λ2-criterion. However, there is one positive difference: the shearing bias—found for the λ2-criterion
and Q-criterion which interpret the shearing zones around the plate and wing edges as vortex zones—has
been eliminated.

From the comparison with the schemes Q,∆, λ2, and λci, some useful qualitative features of ωRAVG can be
deduced. The proposed measure possesses both a clear kinematic interpretation and stretching sensitivity, in
contrast to the criteria Q,∆, λ2, and λci satisfying only one of these aspects. Unlike the Q-criterion, ωRAVG
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λ2-method (2.6%) average corot. (10.0%) maximum corot. (16.8%)
angular step of 1◦

angular step of 18◦

angular step of 45◦

angular step of 90◦

Figure 15: Dependence of results on the angular step size for both average- and maximum-corotation methods
at fixed thresholds (shown in parentheses), the λ2-criterion is presented for comparison purposes and repeated
on each row of the plot. 24



is sensitive to the (∇u)-configuration, and unlike the Q,∆, and λ2 schemes, the ωRAVG-scheme is, similarly
as the λci-criterion, potentially able to determine the ‘plane of swirling’ due to its vector nature.

It should be noted that the widely used Q,∆, λ2, and λci schemes need only one analytical evalua-
tion, while the ωRAVG-criterion needs numerical integration with a chosen precision. The precision of the
approximated value of ωRAVG behaves in a predictable manner. This feature is lacking in the previous
maximum-corotation scheme [30] of similar complexity as well as in the earlier triple-decomposition method
[15] of even higher complexity. Consequently, an angular step of 5◦ or 10◦ can be safely recommended for
providing a feasible compromise between accuracy and required computational time of the numerical inte-
gration. In addition, advanced techniques for numerical integration on a sphere, such as Fibonacci numerical
integration [32], can be employed to accelerate evaluation of the average corotation.

As a well-defined kinematic approach, the proposed average-corotation method is readily applicable to
compressible and variable-density flows in contrast to the λ2-criterion. Recall, that the ∆-criterion and the
associated λci-criterion are directly extendable to compressible flows, while the Q-criterion needs to be a
priori redefined in terms of deviatoric strain rate to be applicable to compressible flows [39].

Acknowledgements

The authors are very grateful to Prof. Ulrich Rist and Dr. Kudret Baysal, IAG, University of Stuttgart,
for providing some of the DNS data sets used in the present paper. This work was supported by the Grant
Agency of the Academy of Sciences of the Czech Republic through grant IAA200600801, by Ministry of
Education, Youth and Sports of the Czech Republic under research project LH11004, and by the Academy
of Sciences of the Czech Republic through RVO:67985874 and RVO:67985840.

A Vortex Identification Methods

A brief survey of vortex-identification schemes is presented in Tables 3 and 4, note that this is far from being
a complete list.

Q-criterion [3]: Vortices of an incompressible flow are identified as connected fluid regions with a positive
second invariant of the velocity-gradient tensor ∇u,∇u = S+Ω,S is the strain-rate tensor, Ω is the vorticity
tensor (in tensor notation below the subscript comma denotes differentiation),

Q ≡ 1

2

(
u2i,i − ui,juj,i

)
= −1

2
ui,juj,i =

1

2

(
‖Ω‖2 − ‖S‖2

)
> 0. (A.1)

This is fulfilled in the regions where the vorticity magnitude prevails over the strain-rate magnitude.

∆-criterion [1, 2, 4]: Vortices are defined as the regions in which the eigenvalues of ∇u are complex and
the streamline pattern is spiraling or closed in a local reference frame moving with the point. To guarantee
complex eigenvalues of ∇u the discriminant ∆ of the characteristic equation should be positive

∆ =

(
Q

3

)3

+

(
R

2

)2

> 0, (A.2)

where Q, given by (A.1), and R ≡ Det(ui,j) are the second and third invariants of ∇u, respectively. The
∆-criterion (A.2) is valid for incompressible flows only. Substituting (A.1) into (A.2), one can see that the
Q-criterion is more restrictive than the ∆-criterion.

λ2-criterion [6]: This criterion is formulated on dynamic considerations, namely on the search for a pressure
minimum across the vortex. The quantity S2 + Ω2 is employed as an approximation of the pressure Hessian
after removing the unsteady irrotational straining and viscous effects from the strain-rate transport equation
for incompressible fluids. A vortex region is defined as a connected fluid region with two negative eigenvalues
of S2 + Ω2 (that is, if these eigenvalues are ordered, λ1 ≥ λ2 ≥ λ3, by the condition λ2 < 0).

λci-criterion [9, 12]: The ∆-criterion has motivated the so-called swirling-strength criterion denoted as
λci-criterion based on the imaginary part of the complex conjugate eigenvalues of ∇u. The time period for
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Table 3: Region-type vortex-identification methods
Author(s) & Year
Basic characteristics
Dallmann (1983) [1]
∆-criterion: complex eigenvalues of ∇u
Vollmers et al. (1983) [2]
∆-criterion: complex eigenvalues of ∇u
Hunt et al. (1988) [3]
Q-criterion: second invariant of ∇u
Chong et al. (1990) [4]
∆-criterion: complex eigenvalues of ∇u
Berdahl & Thompson (1993) [5]
swirl parameter, similar to λci-criterion
Jeong & Hussain (1995) [6]
λ2-criterion: eigenvalues of S2 + Ω2

Portela (1997) [7]
scheme based on set theory
Cucitore et al. (1999) [8]
non-local particle-trajectory method
Zhou et al. (1999) [9]
swirling-strength λci-criterion: complex eigenvalues of ∇u
Sadarjoen & Post (2000) [10]
advanced streamline method
Jiang et al. (2002) [11]
scheme based on combinatorial topology
Chakraborty et al. (2005) [12]
enhanced swirling-strength λci-criterion
Haller (2005) [13]
objective frame-independent vortex definition
Zhang & Choudhury (2006) [14]
Galilean-invariant eigen helicity density
Kolář (2007) [15]
triple decomposition of ∇u: residual vorticity

Table 4: Line-type vortex-identification methods
Author(s) & Year
Basic characteristics
Levy et al. (1990) [16]
extrema of normalized helicity density
Banks & Singer (1995) [17]
vorticity-predictor and pressure-corrector scheme
Sujudi & Haimes (1995) [18]
eigenvectors of ∇u
Kida & Miura (1998) [19]
sectional-swirl and pressure-minimum scheme
Roth & Peikert (1998) [20]
parallel-vectors (higher-order) method
Strawn et al. (1999) [21]
lines of maximum vorticity
Roth (2000) [22]
generalization of earlier line-type methods
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completing one revolution of the streamline on the plane spanned by the complex eigenvectors is given by
2π/λci [12]. The two criteria, ∆ and λci, are equivalent only for zero thresholds (∆=0 and λci=0).

Probably the most detailed study of various line-type methods is conducted in [22]. However, there is a
number of other recent papers on this subject, for example [23, 24, 40].

B Two-Dimensional Kinematics and Residual Vorticity

For the sake of simplicity, let us assume an arbitrary 2D deviatoric (i.e. traceless) velocity-gradient tensor
∇u, for which (ux + vy) = 0. As emphasized in Section 2, only deviatoric motion is decisive in the present
corotation analysis. Considering rotation of coordinates x and y around the third axis (or the plane normal),
the tensor ∇u can be described in an arbitrary reference frame, in the system of principal axes, and in the
specific reference frame, originally introduced as a basic reference frame (BRF) in [15], as follows(

ux uy
vx −ux

)
−→

(
s −ω
ω −s

)PRINCIPAL AXES
−→

(
0 s− ω

s+ ω 0

)BRF
, (B.1)

where the planar deviatoric principal strain rate s (for simplicity, the subscript ‘D’ denoting deviatoric in
Section 2 is omitted) and the vorticity tensor component ω fulfil

|s| =
(√

4u2x + (uy + vx)2
)
/2, (B.2)

ω = (vx − uy)/2. (B.3)

There are two different relative rotational orientations of uydy and vxdx in the BRF, the same and
the opposite, see Fig. 16. In Fig. 16(a), vorticity dominates over deviatoric strain rate. The characteristic
angles α1 and α2 correspond to the residual vorticity ωRES (associated with the rigid-body rotation) and
shear vorticity ωSH (associated with the pure shearing motion) while their sum is proportional to the total
(conventional) vorticity ω. In Fig. 16(b), deviatoric strain rate dominates over vorticity. The characteristic
angles β1 and β2 correspond to the residual strain rate sRES and shear strain rate sSH while their sum is
proportional to the total (conventional) strain rate s. The same signs of the quantities in couples (ωRES, ωSH)
and (sRES, sSH) indicate the non-destructive nature of the superimposing construction of the analyzed in-
finitesimal motion depicted in Fig. 16. For both rotational orientations, the magnitude of the superimposed
shearing motion is given by the difference of the absolute values of uy and vx. In planar flows, a non-zero
ωRES, apparently existing only for the same rotational orientation of uydy and vxdx (see Fig. 16), excludes
the existence of a non-zero sRES, which exists only for the opposite rotational orientation of uydy and vxdx.

With respect to (B.1) showing explicitly the desired velocity-gradient tensor components in the BRF in
terms of the ‘explicit competition’ between s and ω, and assuming |s| ≥ |ω| or |s| ≤ |ω|, the following set of
relations can be derived for s and ω and their residual and shear components (note that the limiting case
|s| = |ω| represents a simple shear) [15]

s = sRES + sSH, (B.4)

|s| = |sRES|+ |sSH|, (B.5)

sSH = (sgn s)|ω| for |s| ≥ |ω|, (B.6)

sSH = s for |s| ≤ |ω|, (B.7)

sRES = s− sSH = (sgn s)[|s| − |ω|] for |s| ≥ |ω|, (B.8)

sRES = s− sSH = 0 for |s| ≤ |ω|, (B.9)

ω = ωRES + ωSH, (B.10)

|ω| = |ωRES|+ |ωSH|, (B.11)

ωSH = ω for |s| ≥ |ω|, (B.12)

ωSH = (sgn ω)|s| for |s| ≤ |ω|, (B.13)

ωRES = ω − ωSH = 0 for |s| ≥ |ω|, (B.14)

ωRES = ω − ωSH = (sgn ω)[|ω| − |s|] for |s| ≤ |ω|. (B.15)
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P
dt

P
dt

dα1 ~ ωRES
dα2 ~ ωSH
(dα1 + dα2) ~ ω

dβ1 ~ sRES
dβ2 ~ sSH
(dβ1 + dβ2) ~ s

shearing
plane
normal

shearing
angle axis

(a)

(b)

vxdx

vxdx

uydy

uydy

dx

dx

dy

dy

dβ1 dβ2

P

dα1 dα2

P

45°

 

Figure 16: Geometrical interpretation of infinitesimal local relative motion near a point: (a) rigid-body
rotation and pure shearing (|s| < |ω|), (b) irrotational straining and pure shearing (|s| > |ω|). Reproduced
from [15].
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The following conclusion can be inferred from (B.15): the magnitude of planar residual vorticity represents
nothing but the simplest measure of the dominance of the planar vorticity magnitude over the planar strain-
rate magnitude. Analogously, from (B.8), the magnitude of planar residual strain rate is nothing but the
simplest measure of the dominance of the planar strain-rate magnitude over the planar vorticity magnitude.

C Determination of the Scaling Factor α in Equation (12)

Let us determine a well-justified value for the scaling factor α introduced in (12). Its derivation is based on
a natural requirement that the conventional vorticity ω = ∇× u, should not be altered by the application
of the averaging procedure.

More specifically, let us define the vector of conventional vorticity related to a plane given by n similarly
to formula (11) as

ωn(x0,n) = 2ωn. (C.1)

Suppose a given vorticity vector ω, that should be reproduced by averaging the quantity ωn in place of
ωRES in (12). Figure 17 illustrates the derivation. The first important step is to realize, that ωn is nothing
but a projection of ω to the direction of n, i.e.

ωn = (ωTn)n = (nnT )ω = Pnω, (C.2)

where Pn = nnT is the projection matrix (components of the vectors are ordered into columns throughout
this section).

Components of the unit normal vector n and the matrix Pn are expressed in the spherical coordinates as

n =

sinϑ cosϕ
sinϑ sinϕ

cosϑ

 , Pn =

 sin2 ϑ cos2 ϕ sin2 ϑ sinϕ cosϕ sinϑ cosϑ cosϕ
sin2 ϑ sinϕ cosϕ sin2 ϑ sin2 ϕ sinϑ cosϑ sinϕ
sinϑ cosϑ cosϕ sinϑ cosϑ sinϕ cos2 ϑ

 . (C.3)

Thus, the projected vorticity vector ωn = Pnω for ω = (ωx, ωy, ωz)
T

is expressed as

ωn =

ωx sin2 ϑ cos2 ϕ+ ωy sin2 ϑ sinϕ cosϕ+ ωz sinϑ cosϑ cosϕ
ωx sin2 ϑ sinϕ cosϕ+ ωy sin2 ϑ sin2 ϕ+ ωz sinϑ cosϑ sinϕ

ωx sinϑ cosϑ cosϕ+ ωy sinϑ cosϑ sinϕ+ ωz cos2 ϑ

 . (C.4)

z

n

ϑ

ω

ωn

x

y

ϕ

Pn

σ(0, 1)

Figure 17: The projection of a vorticity vector according to (C.2).

Let us now integrate this quantity over all planes by averaging analogous to (15) to find the final averaged
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vorticity ω,

ω(x0) =
α

4π

2π∫
0

π∫
0

ωn sinϑ dϑ dϕ

=
α

4π



2π∫
0

π∫
0

(
ωx sin2 ϑ cos2 ϕ+ ωy sin2 ϑ sinϕ cosϕ+ ωz sinϑ cosϑ cosϕ

)
sinϑ dϑ dϕ

2π∫
0

π∫
0

(
ωx sin2 ϑ sinϕ cosϕ+ ωy sin2 ϑ sin2 ϕ+ ωz sinϑ cosϑ sinϕ

)
sinϑ dϑ dϕ

2π∫
0

π∫
0

(
ωx sinϑ cosϑ cosϕ+ ωy sinϑ cosϑ sinϕ+ ωz cos2 ϑ

)
sinϑ dϑ dϕ



=
α

4π


ωxπ

π∫
0

sin3 ϑ dϑ

ωyπ
π∫
0

sin3 ϑ dϑ

ωz2π
π∫
0

cos2 ϑ sinϑ dϑ

 =
α

4π

4π

3

ωxωy
ωz

 =
α

3
ω.

(C.5)

From our requirement that ω = ω, we can immediately see that α = 3.
Another meaning of this derivation is worth noticing: by a component-wise integration of the projection

matrix Pn, we get ∫∫
σ(0,1)

Pndσ =

 4
3π 0 0
0 4

3π 0
0 0 4

3π

 , (C.6)

i.e. the identity matrix scaled by 1/3 of the surface of the sphere. Also note that the vorticity vector plays
just a role of a constant vector in this derivation, and this scaling applies to any vector when the averaging
(12) is applied to its projections of the type (C.2).
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[39] Kolář, V., “Compressibility effect in vortex identification,” AIAA Journal , Vol. 47, No. 2, 2009, pp. 473–
475.

[40] Jiang, M., Machiraju, R., and Thompson, D., “Detection and visualization of vortices,” The Visualiza-
tion Handbook , edited by C. Hansen and C. Johnson, Elsevier, 2005, pp. 295–309.

32


	Introduction
	Local Corotation of Material Line Segments in a Plane
	Determination of Average Corotation
	Applications of Average Corotation to Vortex Identification
	Discussion on Qualitative Features
	Discussion on Numerical Precision
	Conclusions
	Vortex Identification Methods
	Two-Dimensional Kinematics and Residual Vorticity
	Determination of the Scaling Factor  in Equation (12)

