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Abstract

We derive a posteriori error estimates for the discontinuous Galerkin method applied to the Poisson
equation. We allow for a variable polynomial degree and simplicial meshes with hanging nodes and
propose an approach allowing for simple (nonconforming) flux reconstructions in such a setting. We
take into account the algebraic error stemming from the inexact solution of the associated linear systems
and propose local stopping criteria for iterative algebraic solvers. An algebraic error flux reconstruction
is introduced in this respect. Guaranteed reliability and local efficiency are proven. We next propose
an adaptive strategy combining both adaptive mesh refinement and adaptive stopping criteria. At last,
we detail a form of the estimates where that factual construction of the reconstructions is not required,
which simplifies greatly their evaluation. Numerical experiments illustrate a tight control of the overall
error, good prediction of the distribution of both the discretization and algebraic error components, and
efficiency of the adaptive strategy.
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1 Introduction

We consider the second-order pure diffusion problem

−∆u = f in Ω, (1.1a)

u = 0 on ∂Ω, (1.1b)

where Ω ⊂ Rd, d = 2 or 3, is a polygonal (polyhedral) domain and f a source term. The homogeneous
Dirichlet boundary condition (1.1b) is only considered for the sake of simplicity. Hereafter, u is termed the
potential and −∇u the flux. We assume that f ∈ L2(Ω), so that the model problem (1.1) admits a unique
weak solution u.

The total error in a computational approximation of (1.1) consists of two parts: the discretization error,
which arises due to the transition from the infinite-dimensional mathematical model to a finite-dimensional
numerical approximation, and the algebraic error, which arises due to inaccurate solution of the underlying
algebraic systems. Despite a large number of papers dedicated to error estimates, most of them do not take
into account the algebraic error. Among those that do, let us cite [7, 4, 6, 20, 15, 14]. As pointed out in
these references, see also [5] and [19, Chapter 5], knowledge of the algebraic error is of significant importance
for an efficient numerical solution of partial differential equations. The key idea is that of balancing of the
discretization and algebraic errors through a posteriori error estimates and stopping criteria for iterative
algebraic solvers.

Such an idea has already appeared in [7]. A posteriori error estimates involving both discretization
and algebraic error in H1 and L2 norms have been derived there for the Poisson equation considering a
piecewise linear finite element approximation together with a multigrid algebraic solver. A stopping criterion
for the solver has been proposed. The approach is based on a strong stability and the orthogonality property.
Numerical examples illustrate its reliability and efficiency. In [4], stopping criteria for the conjugate gradient
method with respect to the finite element discretization have been studied. The result is based on a lower
bound of the energy norm of the algebraic error of the conjugate gradient method. An extension for non-
self-adjoint problems has been carried out in [6]. Goal-oriented a posteriori error analysis for a linear elliptic
problem focusing on the multigrid method has been carried out in [20]. This concept has been later applied
to the linear elliptic eigenvalue problem in [24]. A linear diffusion problem discretized by a finite volume
method with a focus on the conjugate gradient solver is a subject of the study in [15]. Recently, a general
framework for adaptive numerical solution of nonlinear partial differential equations of diffusion type has
been given in [14]. A posteriori error estimates distinguishing the individual error components together with
stopping criteria for both iterative linear and nonlinear solvers have been developed therein.

It has been illustrated in [19] that even for simple model problems, the local distribution of the dis-
cretization and algebraic errors can differ significantly. It may happen that the overall discretization error
dominates the overall algebraic one, whereas locally, it is just the opposite. Congruently, the stopping
criteria proposed in [15, 14] are based on the local balancing of the discretization and algebraic errors. This
typically leads to local efficiency of the estimates even in presence of the algebraic error. Thus, the adaptive
computational process can be carried out safely including adaptive mesh refinement.

The presence of hanging nodes in the computational mesh is rather seldom allowed in a posteriori error
analysis. In the context of the so-called equilibrated fluxes, it has been done by prescription of the local
degrees of freedom of the flux for advection–diffusion–reaction problems on nonmatching simplicial meshes
in [12]. Pure diffusion problems with non-uniform polynomial degree of the approximate solution are treated
in [2, 3]. In [13], almost arbitrary polygonal/polyhedral meshes are considered and the flux is constructed
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by solving local Neumann problems. All these approaches require existence of a matching submesh of the
given nonmatching mesh to obtain a H(div,Ω)-conforming flux reconstruction, whereas an approach not
requiring a matching submesh is presented in [22, Section 6], following an idea from [29].

In this paper, we aim at extending existing equilibrated flux a posteriori error estimates for discontin-
uous Galerkin methods (DGMs) by including the algebraic error, permitting hanging nodes (without the
necessity to construct any submesh), and allowing the polynomial degree of the approximate solution to
vary locally. We also focus on facilitating the evaluation of the estimators; at least for low-order approx-
imations, the resulting formulas featuring different flux reconstructions can be rewritten in a simple form
where in particular the factual construction of flux reconstructions is not required. Our error estimates
are derived in the broken energy norm with the aid of a flux reconstruction that is constructed in broken
Raviart–Thomas–Nédélec (RTN) space; unlike the existing approaches in the literature, our proposed ap-
proach operates on the original nonmatching mesh only. Therefore, our flux reconstructions generally fail
to belong to H(div,Ω) and flux-nonconformity estimators appear.

The reconstructed flux consists of the discretization and algebraic components. Following the approach
introduced in [15, 14], the algebraic component is constructed directly from the discretization flux recon-
struction by performing some additional steps of the iterative algebraic solver. Such a construction is not
computationally expensive, as the forward iterations are used at the next step of the algebraic solver, but
it does not lead to the exact equilibration property of the flux reconstruction. A remainder term appears
which is treated as in [14].

This paper is organized as follows. We introduce the continuous and discrete settings in Section 2. A
guaranteed a posteriori error estimate taking into account nonmatching meshes, varying polynomial degrees,
and the algebraic error is derived in Section 3. Local adaptive stopping criteria are devised in Section 4.
Section 5 then proves local efficiency even in the considered complex setting. The discussion of simple
practical implementation of the derived a posteriori estimates is presented in Section 6. Finally, Section 7
with numerical experiments demonstrating the tight prediction of the distribution of both the discretization
and algebraic errors even on meshes with hanging nodes concludes the paper.

2 Continuous and discrete problems

We set up here our notation and introduce the continuous and discrete problems.

2.1 Continuous problem

We use standard notation for the Lebesgue and Sobolev spaces. Specifically, for a given domain M ⊂ Rd,
L2(M) denotes the space of square-integrable functions and H1

0 (M) the space of functions having square-
integrable weak derivatives up to the first order and traces vanishing on the boundary. Further, (·, ·)M
denotes the inner product in L2(M) or [L2(M)]d, ‖·‖M denotes the induced norm, and (·, ·)∂M denotes
(d − 1)-dimensional L2(∂M) inner product on ∂M . We will omit subscript M in case M = Ω. By
H(div,M) := {v ∈ [L2(M)]d;∇·v ∈ L2(M)} we denote the space with square-integrable weak divergences,
see, e.g., [8] or [23]. Let us introduce the weak formulation of the problem (1.1): Find u ∈ H1

0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (2.1)

2.2 Meshes with hanging nodes

We consider a family Th (h > 0) of partitions of the closure of Ω into a finite number of closed triangles in
2D and tetrahedra in 3D. We suppose that the simplices have mutually disjoint interiors but we admit the
presence of the so-called hanging nodes. This means that the condition that any face of any element K in
the partition is either a subset of the boundary ∂Ω or a face of another element K ′ may be violated.

We assume that any mesh Th was formed from some initial simplicial mesh without hanging nodes by
subdividing some of its elements (repeatedly) into (d + 1) + (d − 1)2 congruent simplices. Thus, for each
K ∈ Th with a face possessing a hanging node, there exists a simplex, called macro-simplex, sharing this
entire face. Note that macro-elements are not included in the mesh Th. Fig. 1, left gives an illustration of
an admissible mesh and an example of the macro-element.
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K
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K

γ1

γ2

ΓK,1

γ3 = ΓK,2

γ4 = ΓK,3

Figure 1: Example of K having a face with hanging nodes and the macro-element (bold) sharing this face
(left). Notation of the symbols Γ and γ: entire faces ΓK,i, i = 1, 2, 3, of the element K with a hanging node
and the sub-faces γj , j = 1, . . . , 4; obviously ΓK,1 = γ1 ∪ γ2 (right).

Due to a possible presence of hanging nodes, we have to distinguish two types of faces. First, each
simplex K ∈ Th has d + 1 faces Γ defining its boundary ∂K. Second, if a face Γ of some K ∈ Th contains
(a) hanging node(s) then Γ can be split into several sub-faces γ ⊂ Γ where γ = ∂K ∩∂K ′ for some K ′ ∈ Th.
Hence, the symbol Γ denotes an entire face of some K ∈ Th whereas the symbol γ its part which is a common
boundary between two neighboring elements. If Γ ⊂ ∂K does not contain a hanging node then there exists
γ ⊂ ∂K such that γ = Γ, see Fig. 1, right.

By EK we denote the set of all faces Γ ⊂ ∂K, by EHG
K those of them that contain at least one hanging

node, and by E I
K the faces of EK lying in the interior of Ω. Additionally, we set

EHG,N
K := {Γ ∈ E I

K \ EHG
K ,Γ * Γ′ ∈ EHG

K′ ,K ′ ∈ Th}, (2.2)

which denotes the set of all faces of K ∈ Th which are not a part of a face with a hanging node of the
neighboring element, see Figure 2. Obviously, if Γ ∈ EHG,N

K then there exists γ = ∂K ∩ ∂K ′ for some
K ′ ∈ Th such that γ = Γ.

Furthermore, we define the sets of interior and boundary faces γ (edges for d = 2) of Th as follows:

F I
h = {γ; γ = ∂K ∩ ∂K ′, |γ| > 0,K,K ′ ∈ Th}, (2.3a)

FB
h = {γ; γ is a face of K, γ ⊂ ∂K ∩ ∂Ω,K ∈ Th}, (2.3b)

where |γ| stands for the (d−1)-dimensional Lebesgue measure of γ, and set Fh := F I
h∪F

B
h . For each γ ∈ F I

h,
we use the notation KL

γ and KR
γ for the two elements, called neighbors hereafter, such that γ = ∂KL

γ ∩∂KR
γ .

Hence, for the example pictured in Fig. 1, right, we have KL
γ1

= K ′′, KR
γ1

= K, KL
γ2

= K ′ and KR
γ2

= K.

We define a unit normal vector nγ to each γ ∈ F I
h so that it points out of KL

γ . We assume that nγ , γ ∈ FB
h ,

coincides with the unit outward normal to ∂Ω. Note that a face of an element that is divided into several
parts due to the presence of (a) hanging node(s) has, in fact, several parallel normal vectors (possibly with
different orientation). Let hγ := diam(γ) for γ ∈ Fh, hK := diam(K) for K ∈ Th, let |K| denote the
Lebesgue measure of an element K, ∂K the boundary of K, and |∂K| the (d − 1)-dimensional Lebesgue
measure of ∂K.

The previous notations give the identity

⋃

K∈Th

∂K =
⋃

K∈Th

{( ⋃

Γ∈EHG
K

Γ
) ⋃ ( ⋃

Γ∈EHG,N

K

Γ
) ⋃ ( ⋃

γ∈EK∩FB
h

γ
)}

. (2.4)

Obviously, all faces having a hanging node belong to the first union, all interior faces without hanging nodes
and not being a part of a face with a hanging node of the neighboring element appear in the second union
two times, and all boundary faces appear in the third union. Notice that boundary faces do not possess
hanging nodes, i.e. EHG

K ∩ FB
h = ∅, K ∈ Th and γ = Γ for γ ∈ FB

h .
We let TK stand for the set of the element K itself and its neighbors, which includes all elements of

Th that are contained in the macro-elements sharing a complete face with the element K in case that K

4



KK KK

KK

Figure 2: An example of the set of faces (bold lines) EHG
K of an element with a hanging node (left), the set

of faces EHG,N
K of an element with a hanging node (center) and the set of faces EHG,N

K of an element whose
vertex gives rise to a hanging node of the neighboring element (right).

possesses (a) hanging node(s). Further, FK denotes all the faces in this patch and F̃K stands for the set of
faces that share at least a vertex with K.

We assume that the following conditions are satisfied:

shape regularity: ∃Cs > 0;
hK

ρK
≤ Cs ∀K ∈ Th, (2.5a)

local quasi-uniformity: ∃CH > 0; hK ≤ CHhK′ ∀K,K ′ ∈ Th neighbors, (2.5b)

where ρK denotes the diameter of the largest d-dimensional ball inscribed into K.

2.3 Broken spaces

We define the so-called broken Sobolev space over the mesh Th,

Hs(Ω, Th) = {v ∈ L2(Ω); v|K ∈ Hs(K) ∀K ∈ Th}, s ≥ 1.

We equip it with the norm ‖v‖2Hs(Ω,Th)
:=
∑

K∈Th
‖v‖2Hs(K). For v ∈ H1(Ω, Th), we define the broken

gradient ∇hv of v by (∇hv)|K := ∇(v|K) for all K ∈ Th and use the following notation: vLγ stands for the

trace of v|KL
γ
on γ, vRγ is the trace of v|KR

γ
on γ, 〈v〉γ := 1

2 (v
L
γ + vRγ ), [v]γ := vLγ − vRγ , γ ∈ F I

h. Further, for

γ ∈ FB
h , we define vLγ as the trace of v|KL

γ
on γ, and 〈v〉γ := [v]γ := vLγ . If [·]γ or 〈·〉γ appear in an integral

of the form
∫
γ
. . . dS, we will omit the subscript γ and write, respectively, [·] and 〈·〉 instead.

To each K ∈ Th we assign an integer pK ≥ 1 and set p := {pK}K∈Th
. Then, we define the space of

discontinuous piecewise polynomials

S
p

h = {v ∈ L2(Ω); v|K ∈ PpK (K) ∀K ∈ Th},

where PpK (K) is the space of polynomials on K of degree at most pK . We let N := dim(Sp

h ) and NK :=
dim(PpK (K)).

2.4 The discontinuous Galerkin method

We discretize the problem (1.1) with the aid of the interior penalty discontinuous Galerkin method, see, e.g.,
[10] and the references therein. Hence, for uh, vh ∈ S

p

h , we define the forms

a(uh, vh) :=
∑

K∈Th

(∇uh,∇vh)K −
∑

γ∈Fh

(〈∇uh〉·nγ , [vh])γ (2.6a)

− θ
∑

γ∈Fh

(〈∇vh〉·nγ , [uh])γ +
∑

γ∈Fh

(αγh
−1
γ [uh], [vh])γ ,

ℓ(vh) :=(f, vh), (2.6b)
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where αγ > 0, γ ∈ Fh, are (sufficiently large) penalty parameters, and the parameter θ ∈ {1,−1, 0} corre-
sponds to the symmetric, nonsymmetric, and incomplete variants of the interior penalty DGM, respectively.
The discontinuous Galerkin method for problem (1.1) then reads:

Find uh ∈ S
p

h such that a(uh, vh) = ℓ(vh) ∀vh ∈ S
p

h . (2.7)

2.5 Algebraic solution of the linear systems

Let {ϕl}l=1...N be a basis of the space S
p

h such that support of each ϕl, l = 1, . . . , N , is just one simplex

K ∈ Th. Then, expressing the solution of (2.7) in this basis, uh =
∑N

l=1 Uh,lϕl, (2.7) can be rewritten in
the matrix form as follows:

FindUh ∈ RN such thatAUh = F, (2.8)

where A = {Akl}k,l=1...N := {a(ϕl, ϕk)}k,l=1...N , Uh := {Uh,l}l=1...N , and F = {Fk}k=1...N := {ℓ(ϕk)}k=1...N .
Using an iterative algebraic method, the linear algebraic system (2.8) is not solved exactly; at i-th

iteration step, we have
AU i

h = F −Ri, (2.9)

where Ri is the algebraic residual vector associated with the available approximation U i
h. In other words,

the solution that we have at our disposal at step i solves the algebraic system with a perturbed right-hand
side.

Let us define the residual function rih ∈ S
p

h by (rih, ϕk) = Ri
k for k = 1 . . .N . Then the system (2.9)

represents the following perturbed discontinuous Galerkin problem:

Findui
h ∈ S

p

h such that a(ui
h, vh) = ℓ(vh)− (rih, vh) ∀vh ∈ S

p

h . (2.10)

3 Guaranteed error upper bound

In this section, we derive a posteriori error estimate on the error between the approximation ui
h available

from (2.10) and the unknown weak solution u of (2.1).

3.1 Averaging interpolation operator

We first need to construct a H1
0 (Ω)-conforming piecewise polynomial interpolation of a discontinuous piece-

wise polynomials on nonmatching meshes. We follow the approach based on averaging from [16], where the
construction has been done for uniform polynomial degree over a mesh possibly containing hanging nodes.
In [3], an extension for a varying polynomial degree considering a matching submesh has been carried out.
Our proposed approach operates on the original nonmatching mesh only and extends that of [16].

For vh ∈ S
p

h , we intend to define a function IAv(vh) having a polynomial degree in the interior of each
element K ∈ Th equal to maximum of polynomial degrees of vh in some neighborhood. For elements without
a face being a part of a face with a hanging node, the maximum is taken over neighboring elements. For
elements with such a face, the maximum is also taken over elements sharing the face with the hanging node.
We set IAv(vh) to be a polynomial of possibly lower degree on a face Γ ∈ EK , K ∈ Th, given by the maximum
of polynomial degrees of elements sharing this face and in case this face is a part of a face with a hanging
node elements sharing the face with the hanging node. Such a construction prevents excessive refinement in
the vicinity of elements with a high polynomial degree. Figure 3 gives an example of a mesh with hanging
nodes and varying polynomial degree of the approximate solution (left) and the corresponding polynomial
degree of the interpolation operator IAv together with its degrees of freedom (right).

For Γ ∈ EHG,N
K ∪ EHG

K ∪ FB
h , K ∈ Th, we denote pΓ := max{pK′ ; |Γ ∩ ∂K ′| > 0}. For Γ ∈ EHG

K , K ∈ Th,

let NHG,N
h,Γ denote an index set of hanging nodes on Γ that are not associated with a Lagrange basis of order

pΓ on that face. Set NHG,N
h :=

⋃
{NHG,N

h,Γ ; Γ ∈ EHG
K ,K ∈ Th}. Let N I

h,Γ and NB
h,Γ be an index set of points

on Γ associated with a Lagrange basis of order pΓ excluding indices from NHG,N
h for Γ ∈ EHG,N

K ∪ EHG
K ,

K ∈ Th, and Γ ∈ FB
h , respectively. Further, let N

◦
h,K be an index set of points associated with a Lagrange

basis of order p̃K := max{pΓ; Γ ∈ {{EHG,N
K ∪ EHG

K }
⋃
{Γ′; Γ′′ ⊂ Γ′,Γ′′ ∈ EK}}} that lie in the interior of an
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Figure 3: Example of a mesh having variable polynomial degree of the approximate solution ui
h (left),

polynomial degree of IAv(u
i
h) in the interior of mesh elements (right), members of the set NHG,N

h (square

marks) and of the set
⋃
{N I

h,Γ ∪ NB
h,Γ; Γ ∈ EHG,N

K ∪ EHG
K ∪ FB

h } (circle marks) (right).

element K. We will also use the notation TV := {K ∈ Th;V ∈ K} for any Lagrangian vertex V (i.e. any
point associated with a Lagrange basis in question).

The averaging interpolation operator IAv is defined as follows: For all K ∈ Th and Γ ∈ EHG,N
K ∪EHG

K ∪FB
h

IAv(vh)(Vj) =





1

card(TVj
)

∑

K′∈TVj

vh|K′(Vj), j ∈ N I
h,Γ ∪ N ◦

h,K ,

0, j ∈ NB
h,Γ.

(3.1)

For elements with a face being a part of a face with a hanging node of the neighboring element, the value
from this neighboring element is taken to maintain H1

0 (Ω)-conformity.

We are left with specifying the degrees of freedom from the set NHG,N
h . Let K ∈ Th possessing a hanging

node Vk, k ∈ NHG,N
h , be given. Define ZK := N ◦

h,K

⋃
{
⋃
{N I

h,Γ ∪NB
h,Γ; Γ ∈ EHG,N

K ∪EHG
K }}. The value in Vk

is then given by extrapolating the value from the inside of K by

IAv(vh)(Vk) =
∑

j∈ZK

(
1

card(TVj
)

∑

K′∈TVj

vh|K′(Vj)

)
ϕj(Vk), k ∈ NHG,N

h , (3.2)

where Vj , j ∈ ZK , are the Lagrangian vertices of the element K and the corresponding basis functions ϕj ,
j ∈ ZK , are ordered as the Lagrangian vertices. As above, in other elements possessing the node Vk, the
same value is used to maintain H1

0 (Ω)-conformity. Obviously, the polynomial interpolation as defined above
does not belong to S

p

h .
The main reason for such a construction is that we wanted to exploit the advantage of DGMs allowing

for easy treatment of nonmatching meshes. In [2, 3] H1
0 (Ω)-conforming interpolation operator is constructed

on a sufficiently refined submesh of the original mesh. More precisely, every element K ∈ Th possessing
(a) hanging node(s) is uniformly refined to ensure that every hanging node is a vertex of some triangle of
the resulting refinement of K. This leads to very fine submeshes in regions where more hanging nodes per
edge are present and as such it goes opposite to the intention of using nonmatching meshes. Therefore, no
matching submesh of the original mesh is required in our construction.

3.2 Discretization flux reconstruction

Our a posteriori error estimates will be based on equilibrated flux reconstructions (cf. [18, 1, 11]). Let
l = {lK}K∈Th

, l = p or l = p− 1, where p− 1 = {pK − 1}K∈Th
. Let RTNlK (K) := [PlK (K)]d + xPlK (K)

for K ∈ Th. Our reconstructions will be constructed in the broken Raviart–Thomas–Nédélec space

RTNl(Th) := {vh ∈ [L2(Ω)]d,vh|K ∈ RTNlK (K) ∀K ∈ Th}. (3.3)
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We thus use for the reconstruction on each mesh element the same or lower-by-one order as for the ap-
proximate solution ui

h. Recall that for vh ∈ RTNl(Th), we have ∇·vh|K ∈ PlK (K) and vh·n|Γ ∈ PlK (Γ),
Γ ∈ EK , see [8] or [23].

In our construction, H(div,Ω)-conformity of the discretization flux reconstruction may be violated, i.e.,
[vh·nΓ]Γ 6= 0 can occur. This violating gives rise to the presence of additional estimators measuring the
discontinuity of the normal components of the reconstructed fluxes in our estimates. It happens in two
cases:

1. The polynomial degree of the approximate solution in two neighboring elements is different. We could
maintain H(div,Ω)-conformity in this case by increasing the polynomial degree l. However, we prefer
to exploit the advantage of DGMs, namely the possibility of varying polynomial degrees, without any
extra work for flux reconstructions.

2. The mesh Th contains hanging nodes. We could maintain H(div,Ω)-conformity in this case by intro-
ducing a matching simplicial submesh as in [12, 13, 2, 3]. We, however, want to exploit the advantage
of DGMs, namely the simple treatment of hanging nodes, without any extra work for flux reconstruc-
tions.

We will construct separately a discretization flux reconstruction di
h and an algebraic error flux recon-

struction aih. The first one is prescibed as follows:

Definition 3.1 (Discretization flux reconstruction). Let ui
h solve (2.10). The discretization flux recon-

struction di
h ∈ RTNl(Th) is defined as follows: For all K ∈ Th, all Γ ∈ EK , and all qh ∈ PlK (Γ), we

set

(di
h·nΓ, qh)Γ := (−〈∇ui

h·nΓ〉+ αh−1[ui
h], qh)Γ, (3.4a)

and for all qh ∈ [PlK−1(K)]d, we set

(di
h,qh)K := (−∇ui

h,qh)K + θ
∑

Γ∈EK

wΓ(qh·nΓ, [u
i
h])Γ, (3.4b)

where wΓ := 1
2 for interior faces and wΓ := 1 for boundary faces, the function α : Fh → R is defined

piecewise by α|γ := αγ for γ ⊆ Γ ∈ EK ,K ∈ Th, and the function h : Fh → R is defined by h|γ := hγ for
γ ⊆ Γ ∈ EK ,K ∈ Th. The values αγ and hγ , γ ∈ Fh, were introduced in (2.6a).

The reconstruction di
h has the following property:

Lemma 3.2. Let K ∈ Th be arbitrary and di
h be given by (3.4). Then

∇·di
h|K = ΠlK (f |K − rih|K),

where ΠlK is the L2-orthogonal projection onto polynomials of degree lK .

Proof. Let vh ∈ Sl
h, with support on K only, be arbitrary. Using the Green theorem, Definition 3.1, (2.6),

and (2.10), we obtain the sequence of equalities

(∇·di
h, vh)K = −(di

h,∇vh)K +
∑

Γ∈EK

(di
h·nK , vh)Γ = a(ui

h, vh) = (f, vh)K − (rih, vh)K .

3.3 Algebraic error flux reconstruction

The algebraic error will be measured using the algebraic error flux reconstruction. We follow the recent
work [14].

Definition 3.3 (Algebraic error flux reconstruction). Consider the i-th step of the iterative algebraic solver,
leading to (2.9) and (2.10). Perform additional ν steps of the algebraic solver. This gives (2.9) and (2.10)
with i replaced by i+ ν. Let di

h and di+ν
h be the discretization flux reconstructions given by Definition 3.1,

with i replaced by i+ ν in the second case. Then, we define the algebraic error flux reconstruction by

aih := di+ν
h − di

h. (3.5)
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Due to Definition 3.3, we have immediately for all K ∈ Th

∇·aih|K =






∇·di+ν
h |K −∇·di

h|K = ΠpK
f |K − ri+ν

h |K −ΠpK
f |K + rih|K

= rih|K − ri+ν
h |K for l = p,

ΠlK (rih|K − ri+ν
h |K) for l = p− 1.

Let us finally define the total flux reconstruction as the sum of the discretization and the algebraic error
flux reconstruction,

tih := di
h + aih. (3.6)

Then we have
∇·tih|K = ΠlK (f |K − ri+ν

h |K) ∀K ∈ Th, l ∈ {p− 1,p}. (3.7)

Remark 3.4. In [15, Section 7.3], another method for construction of the algebraic error flux reconstruction
has been proposed. It is more precise, leading to the exact equilibration ∇·tih|K = ΠlKf |K instead of (3.7),
but is more costly. On the contrary, in the present approach, the algebraic error flux reconstruction is
constructed simply by (3.5), while the information gained by performing some additional steps of the algebraic
solver is used in the next algebraic solver iteration.

3.4 Guaranteed and fully computable a posteriori error estimate

In the sequel we will use the following inequalities: The Poincaré inequality reads

∀K ∈ Th, ‖ϕ− ϕK‖K ≤
hK

π
‖∇ϕ‖K ∀ϕ ∈ H1(K), (3.8)

where ϕK denotes the mean value of ϕ in K. The Friedrichs inequality reads

‖ϕ‖ ≤ CF,Ω‖∇ϕ‖ ∀ϕ ∈ H1
0 (Ω). (3.9)

The constant CF,Ω can be estimated in the following way, see [25]:

CF,Ω ≤
1

π

(
1

a1
+ . . .+

1

ad

)− 1
2

, (3.10)

where ai, i = 1 . . . d, are the lengths of the edges of a cuboid in which the domain Ω is contained. We will
also use the trace inequality

∀K ∈ Th, Γ ∈ EK , ‖ϕ− ϕΓ‖Γ ≤ CΓ,Kh
1
2

Γ‖∇ϕ‖K ∀ϕ ∈ H1(K), (3.11)

where ϕΓ denotes the mean value of the trace of ϕ on Γ. The constant CΓ,K has been estimated in [21,
Lemma 3.5] as follows:

CΓ,K ≤

(
Cs,d

|Γ|h2
K

|K|hΓ

) 1
2

,

where Cs,d ≈ 0, 77708 for a triangle and Cs,d ≈ 3, 34055 for a tetrahedron.
Now, we are ready to state the main theorem concerning the error upper bound. First, we define different

error estimators. Consider an i-th iteration step of the algebraic solver. For an arbitrary K ∈ Th we define

H1
0 (Ω)-nonconformity estimator: ηiPNC,K := ‖∇(ui

h − IAv(u
i
h))‖K , (3.12a)

residual estimator: ηiR,K :=
hK

π
‖f −∇·tih − ri+ν

h ‖K , (3.12b)

H(div,Ω)-nonconformity estimator: ηiFNC,K :=
∑

Γ∈EHG
K

CΓ,Kh
1
2

Γ‖[t
i
h·nΓ]‖Γ (3.12c)

+
∑

Γ∈EHG,N

K

wΓCΓ,Kh
1
2

Γ‖[t
i
h·nΓ]‖Γ,

flux estimator: ηiF,K := ‖∇ui
h + tih‖K , (3.12d)

algebraic remainder estimator: ηirem,K := CF,Ω‖r
i+ν
h ‖K , (3.12e)

where, we recall, wΓ = 1
2 for interior faces and wΓ = 1 for boundary faces.
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Remark 3.5. Let us point out that the constant CF,Ω in (3.12e) can be quite large, scaling like hΩ for
regularly-shaped domains Ω, see (3.10). It, however, only appears in the algebraic remainder estimator,
which will be made small enough (see Section 4).

Theorem 3.6 (Guaranteed and fully computable a posteriori error estimate). Let u ∈ H1
0 (Ω) be the weak

solution given by (2.1). Let an i-th algebraic solver step be given and let ui
h ∈ S

p

h be the DGM output given
by (2.10). Consider ν > 0 additional algebraic solver steps and let tih be the total flux reconstruction given
by (3.6). Then

‖∇h(u− ui
h)‖ ≤






∑

K∈Th

(ηiPNC,K)2 +






{
∑

K∈Th

(
ηiR,K + ηiF,K + ηiFNC,K

)2
} 1

2

+

{
∑

K∈Th

(ηirem,K)2

} 1
2






2





1
2

=: ηi. (3.13)

In order to prove Theorem 3.6, we recall the abstract energy error estimate (see [17, Lemma 4.4]):

Lemma 3.7 (Abstract energy norm estimate). Let u be the solution of (2.1) and let uh ∈ H1(Ω, Th) be
arbitrary. Then

‖∇h(u − uh)‖
2 ≤ inf

s∈H1
0
(Ω)

‖∇h(uh − s)‖2 + sup
ϕ∈H1

0(Ω),‖∇ϕ‖=1

(∇h(u− uh),∇ϕ)2. (3.14)

Proof of Theorem 3.6. Using uh := ui
h, s := IAv(u

i
h) in (3.14) together with (2.1) gives

‖∇h(u− ui
h)‖

2 ≤ ‖∇h(u
i
h − IAv(u

i
h))‖

2 + sup
ϕ∈H1

0 (Ω),‖∇ϕ‖=1

{
∑

K∈Th

{(f, ϕ)K − (∇ui
h,∇ϕ)K}

}2

. (3.15)

Add and subtract {(tih,∇ϕ)K + (ri+ν
h , ϕ)K} in (3.15) and employ the Green theorem on each K ∈ Th to

obtain

‖∇h(u − ui
h)‖

2 ≤ ‖∇h(u
i
h − IAv(u

i
h))‖

2 + sup
ϕ∈H1

0(Ω),‖∇ϕ‖=1

{
∑

K∈Th

{(f −∇·tih − ri+ν
h , ϕ)K (3.16)

+(tih·nK , ϕ)∂K + (ri+ν
h , ϕ)K − (∇ui

h + tih,∇ϕ)K
}
}2

.

Let us estimate the terms in (3.16) separately.
Using (3.7), the Cauchy–Schwarz inequality, the Poincaré inequality (3.8), (3.12b), and (3.12d) gives

|(f −∇·tih − ri+ν
h , ϕ)K − (∇ui

h + tih,∇ϕ)K | ≤ ‖f −∇·tih − ri+ν
h ‖K‖ϕ− ϕK‖K + ‖∇ui

h + tih‖K‖∇ϕ‖K

≤ ‖f −∇·tih − ri+ν
h ‖K

hK

π
‖∇ϕ‖K + ‖∇ui

h + tih‖K‖∇ϕ‖K = (ηiR,K + ηiF,K)‖∇ϕ‖K . (3.17)

Applying the Cauchy–Schwarz inequality, the Friedrichs inequality (3.9), and (3.12e) yields

∑

K∈Th

(ri+ν
h , ϕ)K ≤ ‖ri+ν

h ‖‖ϕ‖ ≤ ‖ri+ν
h ‖CF,Ω‖∇ϕ‖ =

{
∑

K∈Th

(ηirem,K)2

} 1
2

‖∇ϕ‖. (3.18)

Finally, using (2.4), the fact that ϕ ∈ H1
0 (Ω), that ([tih·nΓ], ϕΓ)Γ = 0 for Γ ∈ EHG

K ∪ EHG,N
K , K ∈ Th,

see (3.4a) and (3.6), and that ([tih·nΓ], ϕ)Γ = 0 for Γ ∈ EK ∩ FB
h , we can write,

∑

K∈Th

(tih·nK , ϕ)∂K =
∑

K∈Th

( ∑

Γ∈EHG
K

([tih·nΓ], ϕ)Γ +
∑

Γ∈EHG,N
K

wΓ([t
i
h·nΓ], ϕ)Γ

)

=
∑

K∈Th

( ∑

Γ∈EHG
K

([tih·nΓ], ϕ− ϕΓ)Γ +
∑

Γ∈EHG,N

K

wΓ([t
i
h·nΓ], ϕ− ϕΓ)Γ

)
.
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Further, using the Cauchy–Schwarz inequality, the trace inequality (3.11), and (3.12c), we obtain

∑

K∈Th

(tih·nK , ϕ)∂K ≤
∑

K∈Th




∑

Γ∈EHG
K

CΓ,Kh
1
2

Γ‖[t
i
h·nΓ]‖Γ‖∇ϕ‖K +

∑

Γ∈EHG,N
K

wΓCΓ,Kh
1
2

Γ‖[t
i
h·nΓ]‖Γ‖∇ϕ‖K





=
∑

K∈Th

ηiFNC,K‖∇ϕ‖K . (3.19)

Now, by using (3.17), (3.18), and (3.19) in (3.16) together with the Cauchy–Schwarz inequality, we con-
clude (3.13).

Let us now distinguish the discretization and algebraic error components:

discretization estimator: ηidisc,K := ηiPNC,K + ηiR,K + ηiFD,K + ηiFNCD,K , (3.20a)

algebraic estimator: ηialg,K := ηiFA,K + ηiFNCA,K , (3.20b)

where

ηiFD,K := ‖∇ui
h + di

h‖K , ηiFA,K := ‖aih‖K ,

ηiFNCD,K :=
∑

Γ∈EHG
K

CΓ,Kh
1
2

Γ‖[d
i
h·nΓ]‖Γ +

∑

Γ∈EHG,N

K

wΓCΓ,Kh
1
2

Γ‖[d
i
h·nΓ]‖Γ, (3.21)

ηiFNCA,K :=
∑

Γ∈EHG
K

CΓ,Kh
1
2

Γ‖[a
i
h·nΓ]‖Γ +

∑

Γ∈EHG,N

K

wΓCΓ,Kh
1
2

Γ‖[a
i
h·nΓ]‖Γ.

Corollary 3.8 (A posteriori error estimate distinguishing contributions of the discretization and algebraic
error). Let the assumptions of Theorem 3.6 be satisfied. Then

‖∇h(u− ui
h)‖ ≤

{
2
∑

K∈Th

(ηidisc,K)2

} 1
2

+

{
∑

K∈Th

(ηialg,K)2

} 1
2

+

{
∑

K∈Th

(ηirem,K)2

} 1
2

. (3.22)

Proof. Using the inequalities ‖∇ui
h + tih‖K ≤ ‖∇ui

h + di
h‖K + ‖aih‖K and ‖[tih·nΓ]‖Γ ≤ ‖[di

h·nΓ]‖Γ +
‖[aih·nΓ]‖Γ following from (3.6), the Cauchy–Schwarz inequality, (3.20) and (3.21), we obtain from (3.13)
the assertion (3.22).

4 Stopping criteria and the adaptive algorithm

We propose in this section our stopping criteria and the corresponding adaptive solution algorithm. As
discussed in [15, 14], on a given mesh, there is no need to continue iterations of the algebraic solver when
the algebraic error falls below the discretization error. The total error cannot be reduced anyway. Combining
this concept with that of adaptive mesh refinement, we propose the following adaptive solution algorithm:
Let parameters γrem > 0, γalg > 0, and an integer ν∗ > 0 be given. Let T1 be an initial mesh, U0

1 ∈ RN an
initial guess for the iterative algebraic solver, and TOL a user-given tolerance (the subscript h from previous
sections is in this section replaced by j).

Algorithm 4.1 (Adaptive solution algorithm).

1. Set j := 1.

2. (a) Set i := ν∗.

(b) Perform ν∗ steps of the algebraic solver starting with U0
j to get a new approximation U i

j solv-
ing (2.9).

(c) i. Set ν := ν∗.

ii. Perform ν∗ additional steps of the algebraic solver starting with U i+ν−ν∗

j , save U i+ν
j . Con-

struct new aij following (3.5) and evaluate the estimators ηidisc,K, ηialg,K , and ηirem,K for all
K ∈ Tj.
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iii. Check whether

ηirem,K ≤ γrem(η
i
disc,K + ηialg,K) ∀K ∈ Tj . (4.1a)

If not satisfied, set ν := ν + ν∗ and go back to step 2(c)ii.

(d) Check whether

ηialg,K ≤ γalgη
i
disc,K ∀K ∈ Tj . (4.1b)

If not satisfied, i := i+ ν and go to step 2(c)i.

3. Check whether ηi ≤ TOL. If satisfied, stop. Else refine Tj adaptively to Tj+1, interpolate the currently
available U i

j from Tj to Tj+1 to get new U0
j+1, set j := j + 1, and go to step 2a.

Remark 4.2 (Global stopping criteria). One can also define the following global version of the criteria (4.1):

ηirem ≤ γrem(η
i
disc + ηialg), (4.2a)

ηialg ≤ γalgη
i
disc, (4.2b)

where ηirem :=
{∑

K∈Th
(ηirem,K)2

} 1
2 , ηialg :=

{∑
K∈Th

(ηialg,K)2
} 1

2

, ηidisc :=
{∑

K∈Th
(ηidisc,K)2

} 1
2

.

5 Local efficiency of the a posteriori error estimate

In this section, we will show that the estimators ηidisc,K , ηialg,K , and ηirem,K also provide local lower bound
for the error. This gives a theoretical justification of these estimators and of their usage in Algorithm 4.1.
Recall that TK denotes the set of the element K itself with its neighbors (including all elements that are
contained in the macro-element sharing a complete face with the element K in case K possesses a hanging
node), FK denotes the faces Γ in this patch, and F̃K the set of faces γ that share at least a vertex with K.

Theorem 5.1 (Local efficiency of the estimate). Let u ∈ H1
0 (Ω) be the weak solution given by (2.1). Let

an i-th algebraic solver step be given and let ui
h ∈ S

p

h be given by (2.10). Let f be a piecewise polynomial of
degree p. Let finally the algebraic solver be stopped as soon as the local stopping criteria (4.1) hold. Then
there exists a generic constant C depending only on the shape-regularity constant Cs of (2.5a), the local
quasi-uniformity constant CH of (2.5b), the given weights γrem and γalg, the space dimension d, the DGM
penalty parameter αmax := maxγ∈Fh

αγ, and the polynomial degree p of the function ui
h such that, for all

K ∈ Th,

ηidisc,K + ηialg,K + ηirem,K ≤ C





∑

K′∈Th;TK∩TK′ 6=∅

‖∇(u− ui
h)‖

2
K′





1
2

+ C





∑

γ∈FK∪F̃K

h−1
γ ‖[ui

h]‖
2
γ





1
2

. (5.1)

Proof. Let K ∈ Th be arbitrary but fixed. Due to the imposed local stopping criteria (4.1), we have

ηidisc,K + ηialg,K + ηirem,K ≤ Cηidisc,K . (5.2)

First, analogously to [16], it can be shown that the operator IAv defined in Section 3.1 has the following
approximation property:

‖∇(vh − IAv(vh))‖
2
K ≤ C

∑

γ∈F̃K

h−1
γ ‖[vh]‖

2
γ , ∀vh ∈ S

p

h .

Thus, we have

ηiPNC,K ≤ C





∑

γ∈F̃K

h−1
γ ‖[ui

h]‖
2
γ






1
2

. (5.3)
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Further, observe that if the flux reconstruction tih has the order l = p, ηiR,K = hK

π ‖f−∇·tih−ri+ν
h ‖K = 0

due to (3.7) and the assumption made on f . In the case of l = p− 1 we proceed as follows. By adding and
subtracting ∆ui

h in ηiR,K , using the triangle inequality and the inverse inequality

‖∇vh‖K ≤ Ch−1
K ‖vh‖K ∀vh ∈ PpK (K),

we have

ηiR,K ≤
hK

π
‖f +∆ui

h‖K + C‖∇ui
h + tih‖K +

hK

π
‖ri+ν

h ‖K .

Further, (3.6) and the triangle inequality give

ηiR,K ≤
hK

π
‖f +∆ui

h‖K + C‖∇ui
h + di

h‖K + C‖aih‖K +
hK

π
‖ri+ν

h ‖K . (5.4)

Due to (3.20b) and (3.12e), the last two terms are bounded by ηialg,K + ηirem,K . The first term is a standard
residual estimator known to satisfy (see [28])

hK‖f +∆ui
h‖K ≤ C‖∇(u− ui

h)‖K . (5.5)

Next, we will estimate ‖∇ui
h + di

h‖K . According to [9, Lemma 3.5], we can write

‖∇ui
h + di

h‖
2
K ≤ C




hK

∑

Γ∈EK

‖(∇ui
h + di

h)·nΓ‖
2
Γ +

(
sup

qh∈[PlK−1(K)]d

(∇ui
h + di

h,qh)K
‖qh‖K

)2



 . (5.6)

For qh ∈ [PlK−1(K)]d, taking into account definition (3.4b), we have

(∇ui
h + di

h,qh)K = θ
∑

Γ∈EK

wΓ(qh·nΓ, [u
i
h])Γ.

Now, by using the Cauchy–Schwarz inequality and the inverse inequality ‖qh‖Γ ≤ Ch
−1/2
K ‖qh‖K , we obtain

(∇ui
h + di

h,qh)K ≤ C|θ|h
−1/2
K ‖qh‖K

∑

Γ∈EK

wΓ‖[u
i
h]‖Γ. (5.7)

By putting (5.7) into (5.6) and using definition (3.4a), we get

‖∇ui
h + di

h‖
2
K ≤ C



hK

∑

Γ∈EI
K

‖ΠlK [∇ui
h·nΓ]‖

2
Γ + hKα2

max

∑

Γ∈EK

h−2
Γ ‖ΠlK [ui

h]‖
2
Γ

+|θ|2h−1
K

∑

Γ∈EK

w2
Γ‖[u

i
h]‖

2
Γ

}
.

Let Γ ∈ E I
K . With the aid of the edge bubble functions technique introduced by Verfürth, see [28], it

can be shown that

h
1
2

Γ‖[∇ui
h·nΓ]‖Γ ≤





C
∑

K′′∈{KL
γ ,KR

γ }

‖∇(u− ui
h)‖K′′ for γ = Γ ∈ E I

K \ EHG
K ,

C



‖∇(u− ui
h)‖K +

∑

K′⊂KNEI
Γ

‖∇(u− ui
h)‖K′



 for Γ ∈ EHG
K ,

where KNEI
Γ denotes the macro-element sharing the complete face Γ with the element K. Therefore, by

taking into account the estimate

‖ΠlK [∇ui
h·nΓ]‖Γ ≤ ‖[∇ui

h·nΓ]‖Γ, Γ ∈ E I
K , (5.8)
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we obtain

hK

∑

Γ∈EI
K

‖ΠlK [∇ui
h·nΓ]‖

2
Γ ≤ hK

∑

Γ∈EI
K

‖[∇ui
h·nΓ]‖

2
Γ ≤ C

∑

K∈TK

‖∇(u− ui
h)‖

2
K .

Finally, using

‖ΠlK [ui
h]‖Γ ≤ ‖[ui

h]‖Γ

yields

‖∇ui
h + di

h‖
2
K ≤ C

{
∑

K∈TK

‖∇(u− ui
h)‖

2
K + (α2

max + 1)
∑

Γ∈EK

h−1
Γ ‖[ui

h]‖
2
Γ

}
. (5.9)

Now, it remains to estimate the last term of (3.20a). According to the estimate in [29, Theorem 3.3,
(3.21)] and [22, Theorem 4.3], for a vector only piecewise in H(div, ·), we can write

h
1
2

Γ‖[d
i
h·nΓ]‖Γ ≤






C
∑

K′′∈{KL
γ ,KR

γ }

‖di
h +∇u‖K′′ for γ = Γ ∈ EHG,N

K ,

C


‖di

h +∇u‖K +
∑

K′⊂KNEI
Γ

‖di
h +∇u‖K′


 for Γ ∈ EHG

K .

Now, adding and subtracting ∇ui
h in the norm to the above right-hand sides together with the triangle

inequality yields

h
1
2

Γ‖[d
i
h·nΓ]‖Γ ≤






C
∑

K′′∈{KL
γ ,KR

γ }

(
‖di

h +∇ui
h‖K′′ + ‖∇(u− ui

h)‖K′′

)
for γ = Γ ∈ EHG,N

K ,

C

(
‖di

h +∇ui
h‖K + ‖∇(u− ui

h)‖K

+
∑

K′⊂KNEI
Γ

(
‖di

h +∇ui
h‖K′ + ‖∇(u− ui

h)‖K′

)
)

for Γ ∈ EHG
K .

(5.10)

Now combining (5.2) with definition (3.20a) and (5.3), (5.4), (5.5), (5.9), and (5.10) gives

ηidisc,K + ηialg,K + ηirem,K ≤ C





∑

K′∈Th;TK∩TK′ 6=∅

‖∇(u− ui
h)‖

2
K′






1
2

+ C





∑

γ∈FK∪F̃K

h−1
γ ‖[ui

h]‖
2
γ






1
2

+ C(ηialg,K + ηirem,K).

Choosing γrem and γalg in (4.1) small enough allows to discard the contribution of ηialg,K and ηirem,K from
the above right-hand side and to arrive at (5.1).

6 Simple evaluation of the a posteriori estimates

The estimators of Theorem 3.6 and Corollary 3.8 may seem rather difficult to evaluate at a first sight.
In particular the flux reconstructions in RTN spaces may be a little involved to code and work with. In
this section, we show that, at least for low-order approximations (most frequently used in practice), our
estimates lead to simple formulas not featuring the flux reconstructions which are easy to implement and
evaluate.
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6.1 First-order discretization

We start with the simplest case considering ui
h ∈ S1

h and tih ∈ RTN0(Th). Let us first provide an explicit
definition of RTN0(Th)-basis.

Definition 6.1. (Definition of RTN0(Th)-basis functions) Let a simplex K ∈ Th be given. Let Γj, j =
1 . . . d + 1, be its faces/edges and VΓj

, j = 1 . . . d + 1, the opposite vertices, respectively. Let nj,∂K denote
the unit outward normal to K along Γj. The RTN0(Th)-basis functions are defined by

ψΓj
(x) := nΓj

·nj,∂K
1

d|K|
(x− VΓj

) for j = 1 . . . d+ 1, x ∈ K.

Notice that the volume |K| can be computed by the formula:

|K| =
1

d!
det

(
VΓ1

. . . VΓd+1

1 . . . 1

)
.

For any tih ∈ RTN0(Th), we can write tih|K =
∑

Γ∈EK
(tih)ΓψΓ, where (tih)Γ are the degrees of freedom

associated with the basis of Definition 6.1. Recall that we distinguish the discretization and algebraic
components, i.e., tih = di

h + aih. Let K ∈ Th be fixed. Then, for Γ ∈ EK , the coefficients (di
h)Γ are given by,

see (3.4a),
(di

h)Γ := (di
h·nΓ, 1)Γ = (−〈∇ui

h·nΓ〉+ αh−1[ui
h], 1)Γ, (6.1a)

whereas coefficients (aih)Γ are given by, see Definition 3.3,

(aih)Γ := ((di+ν
h − di

h)·nΓ, 1)Γ = (−〈∇(ui+ν
h − ui

h)·nΓ〉+ αh−1[ui+ν
h − ui

h], 1)Γ. (6.1b)

Let {ϕj}j∈SK
be a basis of S1

h |K and {ϕj}j∈NK
a basis of S1

h on K and all its neighbors. Expressing ui
h in

these bases yields

ui
h|K =

∑

j∈SK

(ui
h)jϕj , ui

h|K′∈Th; |∂K∩∂K′|>0 =
∑

j∈NK

(ui
h)jϕj . (6.2)

Using (6.2) in (6.1a) and (6.1b) gives

(di
h)Γ = (di

h·nΓ, 1)Γ =
(
−
∑

j∈NK

(ui
h)j 〈∇ϕj ·nΓ〉+ αh−1

∑

j∈NK

(ui
h)j [ϕj ], 1

)

Γ
, (6.3a)

(aih)Γ = (aih·nΓ, 1)Γ =
(
−
∑

j∈NK

(ui+ν
h − ui

h)j 〈∇ϕj ·nΓ〉+ αh−1
∑

j∈NK

(ui+ν
h − ui

h)j [ϕj ], 1
)

Γ
. (6.3b)

Now, we are ready to provide explicit formulas for evaluation of a posteriori error estimators in Corollary 3.8
avoiding the physical construction of the potential reconstruction IAv(u

i
h) and of the flux reconstructions

di
h and aih.
Let us start with the estimator ‖∇ui

h + di
h‖K . First, (∇ui

h + di
h)|K ∈ [P1(K)]d holds. Thus, we will

need a quadrature rule that is exact for quadratic polynomials such as

∫

K

w(x) dx ≈





|K|

3

∑

Γ∈EK

w(xΓ), for d = 2,

|K|

20

4∑

k=1

w(VΓk
) +

4|K|

5
w(xg), for d = 3,

(6.4)

where xΓ are the mid-points of the sides of the triangleK whereas xg is the barycentre and VΓk
, k = 1, 2, 3, 4,

are the vertices of the tetrahedron K. Recall that EK denotes the set of the faces of the element K. With
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the aid of (6.4) and (6.3a), we have

‖∇ui
h + di

h‖
2
K =






|K|

3

∑

Γ∈EK

∣∣∣∣∣∣

∑

j∈SK

(ui
h)j∇ϕj(xΓ) +

∑

Γ′∈EK

(di
h)Γ′ψΓ′(xΓ)

∣∣∣∣∣∣

2

, for d = 2,

|K|

20

4∑

k=1

∣∣∣∣∣∣

∑

j∈SK

(ui
h)j∇ϕj(VΓk

) +
∑

Γ′∈EK

(di
h)Γ′ψΓ′(VΓk

)

∣∣∣∣∣∣

2

+
4|K|

5

∣∣∣∣∣∣

∑

j∈SK

(ui
h)j∇ϕj(xg) +

∑

Γ′∈EK

(di
h)Γ′ψΓ′(xg)

∣∣∣∣∣∣

2

, for d = 3.

Analogously, as aih|K ∈ [P1(K)]d, we get

‖aih‖
2
K =





|K|

3

∑

Γ∈EK

∣∣∣∣∣
∑

Γ′∈EK

(aih)Γ′ψΓ′(xΓ)

∣∣∣∣∣

2

, for d = 2,

|K|

20

4∑

k=1

∣∣∣∣∣
∑

Γ′∈EK

(aih)Γ′ψΓ′(VΓk
)

∣∣∣∣∣

2

+
4|K|

5

∣∣∣∣∣
∑

Γ′∈EK

(aih)Γ′ψΓ′(xg)

∣∣∣∣∣

2

, for d = 3.

Another estimator that needs to be evaluated is ‖∇(ui
h−IAv(u

i
h))‖K . As ∇(ui

h−IAv(u
i
h))|K ∈ [P0(K)]d

holds, the following quadrature rule of the algebraic order 1 is sufficient:

∫

K

w(x) dx ≈ |K|w(xg),

where xg is the barycentre of the simplex K. With the aid of (6.2) and (3.1), we can write

‖∇(ui
h − IAv(u

i
h))‖

2
K = |K|

∣∣∣∣∣
∑

j∈SK

(ui
h)j∇ϕj(xg)−∇

d+1∑

k=1

(IAv(u
i
h))kϕk(xg)

∣∣∣∣∣

2

,

(IAv(u
i
h))k :=





1

card(TVΓk
)

∑

K′∈TVΓk

∑

j∈SK′

(ui
h)jϕj |K′(VΓk

), for k 6∈ NHG,N
h ,

∑

j∈ZK

(
1

card(TVj
)

∑

K′∈TVj

∑

l∈SK′

(ui
h)lϕl|K′(Vj)

)
ϕj(VΓk

), for k ∈ NHG,N
h ,

where ZK is defined below (3.1), VΓk
, k = 1 . . . d + 1, are the vertices of the element K and the basis

functions ϕk of S1
h |K are ordered as the vertices.

Now, the estimators

∑

Γ∈EHG
K

CΓ,Kh
1
2

Γ‖[d
i
h·nΓ]‖Γ and

∑

Γ∈EHG,N

K

wΓCΓ,Kh
1
2

Γ‖[d
i
h·nΓ]‖Γ

are to be evaluated. Due to the fact that [di
h·nΓ]|Γ ∈ P0(Γ), it is quite easy. There are two cases to consider:

1. If both the face Γ has no hanging node and the polynomial degrees of the approximate solution ui
h on

the adjacent triangles agree, then
[di

h·nΓ]Γ = 0.

2. The face Γ possesses a hanging node or polynomial degrees of the approximate solution ui
h on the

adjacent triangles disagree. For simplicity, let us assume that only one hanging node is present. Let
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γ1 and γ2 be those parts which have the hanging node in common and which comprise the face Γ. Let
K1 and K2 be the elements sharing their faces with K (see Fig. 4). Then

‖[di
h·nΓ]‖

2
Γ =

(
[−〈∇ui

h·nγ1
〉] + αγ1

h−1
γ1

(Π0,γ1
−Π0,Γ|γ1

)[ui
h]
)2

|γ1|

+
(
[−〈∇ui

h·nγ2
〉] + αγ2

h−1
γ2

(Π0,γ2
−Π0,Γ|γ2

)[ui
h]
)2

|γ2|,

where Π0,Γj
, j = 1, 2, and Π0,Γ are the L2-orthogonal projections onto P0(Γj), j = 1, 2, and P0(Γ),

respectively.

K1

K

K2

γ1

γ2

Γ

Figure 4: Components of a face Γ

Finally, the second and third terms of (3.20b) remain to be evaluated. But this can be done in the same
way as just above.

6.2 Second-order discretization

We continue by considering ui
h ∈ S2

h and tih ∈ RTN1(Th). Let us state the explicit definition of RTN1(Th)-
basis.

Definition 6.2. (Definition of RTN1(Th)-basis functions) Let a simplex K ∈ Th be given. Let Γj, j =
1 . . . d + 1, be its faces/edges and VΓj

, j = 1 . . . d + 1, the opposite vertices, respectively. Let nj,∂K denote
the unit outward normal to ∂K along Γj. Let ej, j = 1 . . . d + 1, stand for the canonical basis of Rd and
SΓj

for the average value of S on Γj. Let finally λj , j = 1 . . . d+1, be the barycentric coordinates, ϕl be the
basis functions of P2(K) of the type 4λiλj , 1 ≤ i < j ≤ d+ 1, and φl, l = 1 . . . 8, be defined by:




x2
2

−x1x2

0


 ,




0
−x2x3

x2
2


 ,



−x1x2

x2
1

0


 ,



−x1x3

0
x2
1


 ,




x2
3

0
−x1x3


 ,




0
x2
3

−x2x3


 ,




x2x3

−x1x3

0


 ,




0
x1x3

−x1x2


 .

The RTN1(Th)-basis functions corresponding to the following degrees of freedom

q 7→

∫

Γj

q·nΓj
dS for j = 1 . . . d+ 1,

q 7→

∫

Γj

q·nj,∂K(S − SΓj
) dS for j = 1 . . . d+ 1,

q 7→

∫

K

q·ej dx for j = 1 . . . d+ 1
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are defined as follows

ψΓj
(x) := nΓj

·nj,∂K
1

d|K|
(x− VΓj

) for j = 1 . . . d+ 1, x ∈ K,

ψl(x) :=

{
curlϕl for l = 1 . . . 3 if d = 2,

curlφl for l = 1 . . . 8 if d = 3,

ψj(x) := 4

d+1∑

i=1

λi
∂λi

∂xj
(VΓi

− x) for j = 1 . . . d.

Enumerate the basis functions from Definition 6.2 as ψl, l = 1 . . . 8, for d = 2 and l = 1 . . . 15 for d = 3.
For any tih ∈ RTN1(Th), we can write tih|K =

∑
l(t

i
h)lψl with (tih)l the associated degrees of freedom.

Recall that tih = di
h + aih. Let K ∈ Th be fixed. Then the coefficients (di

h)l are given by (3.4a) and (3.4b).
The coefficients of aih are defined analogously following Definition 3.3.

The evaluation of a posteriori error estimators in Corollary 3.8 can be done again without factual
construction of reconstructions as in Section 6.1. In particular, one needs a quadrature rule that is exact
for quartic polynomials. Let

V
(3,1,0)
ij :=

3

4
VΓi

+
1

4
VΓj

1 ≤ i, j ≤ d+ 1, i 6= j,

V
(2,2,0)
ij :=

1

2
VΓi

+
1

2
VΓj

1 ≤ i < j ≤ d+ 1,

V
(2,1,1)
ijk :=

1

2
VΓi

+
1

4
VΓj

+
1

4
VΓk

1 ≤ i, j, k ≤ d+ 1, i 6= j < k.

Then such a formula is, see [27],

∫

K

w(x) dx ≈





4|K|

45

∑

1≤i,j≤3,i6=j

w(V
(3,1,0)
ij )−

|K|

45

∑

1≤i<j≤3

w(V
(2,2,0)
ij )

+
8|K|

45

∑

1≤i,j,k≤3,i6=j<k

w(V
(2,1,1)
ijk ), for d = 2,

−5|K|

420

4∑

k=1

w(VΓk
) +

16|K|

420

∑

1≤i,j≤4,i6=j

w(V
(3,1,0)
ij )

−
12|K|

420

∑

1≤i<j≤4

w(V
(2,2,0)
ij ) +

16|K|

420

∑

1≤i,j,k≤4,i6=j<k

+w(V
(2,1,1)
ijk )

+
128|K|

420
w(xg), for d = 3,

where xg is the barycentre of the simplex K.

7 Numerical experiments

In this section we will illustrate the behavior of the error estimates introduced in Section 3 and of the
adaptive solution algorithm introduced in Section 4.

Algorithm 4.1 is applied with parameters ν∗ = 15 and γrem = γalg = 10−1. We use the GMRES method
[26] with ILU(0) preconditioning in order to solve the system (2.8). Our computations were carried out
imposing three types of stopping criteria. Namely, local stopping criteria (4.1), global stopping criteria (4.2),
and classical stopping criteria, where the last means that GMRES method was let to converge to a certain
tolerance for the relative preconditioned algebraic residuum measured in the ℓ2-norm. This tolerance has
been chosen as big as possible such that the precision of the results is comparable with those when the local
stopping criteria are applied. In the example below such a tolerance is 10−6. Note that using a still smaller
tolerance, as often done in practice, would favor even more our approach.
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Figure 5: Development of the estimators on the individual meshes for local (left), global (middle), and
classical stopping criteria (right)

7.1 Example with a smooth solution

We consider Ω ∈ (0, 1)× (0, 1) and prescribe the source term in such a way that the exact solution has the
following form:

u(x1, x2) = sin(2π(x1 + x2)).

We employ the incomplete interior penalty DGM, i.e., (2.7) with θ = 0, with the penalty parameter
αγ = 20 for all γ ∈ Fh on triangular meshes possibly containing hanging nodes. The approximate solution
is sought in the space S2

h , 2 := {2K}K∈Th
, and the flux reconstructions in the RTN space RTN2(Th). The

discretization flux reconstruction is defined by (3.4a) and (3.4b) whereas the algebraic error flux reconstruc-
tion by (3.5).

The computation is started with zero initial approximation for GMRES solver on a triangular conform-
ing grid with 288 elements. Meshes are generated adaptively according to the elementwise discretization
estimator (3.20a). Since we aim at fulfilling the condition ηidisc ≤ ω for some tolerance ω, we require

ηidisc,K ≤
ω

card(Th)
1
2

(7.1)

to hold for all K ∈ Th, where card(Th) denotes the number of triangles in the current mesh. Therefore,
triangles for those the condition (7.1) is violated are split into four smaller ones. The tolerance ω has been
set to 3.3 10−2 in the computations. In what follows, we display results for five successive meshes resulting
from four levels of adaptation.

First, we show the behavior of individual estimators as defined in (3.12a), (3.12b), and (3.21). Results
on the original mesh and first, second, third, and fourth adaptively refined meshes are displayed in Figure 5.
Discretization and algebraic flux nonconformity estimators are not displayed for first two meshes as no
hanging nodes are present and consequently they are zero (recall that we consider the same polynomial
degree over the whole mesh). While the discretization flux estimator dominates on first two meshes, flux
nonconformity estimators join on subsequent meshes where hanging nodes occur. We can see that the
residual estimator is not substantial in comparison with other estimators as it is by one order of magnitude
smaller on the first mesh and by two orders of magnitude smaller on subsequent meshes. Substantial
estimators include flux estimators and potential nonconformity estimators. It is important to note that in
all three cases, the values and behavior of the discretization estimators are very close.

Further, we are interested in how the estimators of the total, discretization, and algebraic error (see
respectively the right-hand side of (3.13), (3.20a), and (3.20b)) correspond to the actual errors. In Figure 6
evolution of these estimators through the whole adaptation process as a function of mesh adaptation is
displayed.

Subsequent series of figures compare actual and estimated distribution of the total, discretization, and
algebraic errors when local stopping criteria (4.1) are applied. We can see that our prediction of distribution
of the discretization error is sharp on meshes not including hanging nodes whereas such a sharpness is lost
a bit when hanging nodes appear. That is the price we pay for an economical computation of flux recon-
structions as we do not construct a matching submesh of the original (nonmatching) mesh. Gratifyingly,
Figures 9, 12, 15, 18, and 21 show that our estimates provide sharp prediction of the algebraic error even
on meshes with hanging nodes.
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Figure 6: Development of the total, discretization, and algebraic error and the respective estimates during
the adaptive process for local (left), global (middle), and classical stopping criteria (right)

Finally, Figure 22 (left) compares energy error of the computational solution ui
h and Figure 22 (right) the

effectivity index as a function of (accumulated) GMRES iterations for the individual stopping criteria. We
observe that local stopping criteria lead to significant computational savings compared to classical stopping
criteria, with a minimal loss of accuracy. In order to achieve a given value of the energy error, much more
GMRES iterations are required for the classical stopping criteria in comparison with the local stopping
criteria. Global stopping criteria enable still more economical calculation without precision loss in this first
test case without singularity. Finally, we can see that the effectivity index jumps depending on the increase
or decrease of the number of hanging nodes. More precisely, its value is close to 1.7 on meshes without
hanging nodes and increases a little bit close to 3 when hanging nodes appear.

7.2 Example with a steep gradient solution

We consider Ω ∈ (0, 1)× (0, 1) and prescribe the source term in such a way that the exact solution has the
following form:

u(x1, x2) = arctan(36x1).

We employ the same initial computational setting as in the previous example. In particular, the ap-
proximate solution is sought in the space S2

h , 2 := {2K}K∈Th
, and the flux reconstructions in the RTN

space RTN2(Th). As in the previous example, we show results for five successive meshes resulting from
four levels of adaptation. The behavior of individual estimators as defined in (3.12a), (3.12b), and (3.21)
on all computational meshes is displayed in Figure 23. In this example, only the original mesh is without
hanging nodes. Therefore, discretization and algebraic flux nonconformity estimators are zero just on that
mesh. The number of hanging nodes is much smaller in comparison with the first example 7.1. As a result,
the flux nonconformity estimators are not dominant in this example even on meshes with hanging nodes.
As in the first example 7.1, we observe that the residual estimator is by one to two orders of magnitude
smaller on the individual meshes and that the values and behavior of the discretization estimators for the
individual stopping criteria are very close. In Figure 24 evolution of the estimators of the total, discretiza-
tion, and algebraic error (see respectively the right-hand side of (3.13), (3.20a), and (3.20b)) through the
whole adaptation process as a function of mesh adaptation is displayed.

Further, Figures 25-39 compare actual and estimated distribution of the total, discretization, and alge-
braic errors when local stopping criteria (4.1) are applied. We can see that the steep gradient region is well
predicted (see Figures 26, 29, 32, 35, and 38), however, in fine meshes of Figures 35 and 38 the discretization
error is overestimated in triangles with a hanging node. As in the first example 7.1, our estimates provide
sharp prediction of the algebraic error.

Finally, Figure 40 (left) compares energy error of the computational solution ui
h and Figure 40 (right)

the effectivity index as a function of (accumulated) GMRES iterations for the individual stopping criteria.
We observe that local stopping criteria lead to just slight computational savings (10% of GMRES iterations
exactly) compared to classical stopping criteria, with a minimal loss of accuracy. On the contrary, global
stopping criteria require about half of iterations less with subtle precision loss. Further, we can see that the
variation of the effectivity index is not much influenced by the presence of hanging nodes as the number of
hanging nodes is not substantial in comparison with the number of triangles.

20



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4

6

8

10

12

14

x 10
−3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01

0.015

0.02

0.025

0.03

Figure 7: Distribution of the total error (left) and its estimate (right) on the first mesh
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Figure 8: Distribution of the discretization error (left) and its estimate (right) on the first mesh
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Figure 9: Distribution of the algebraic error (left) and its estimate (right) on the first mesh
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Figure 10: Distribution of the total error (left) and its estimate (right) on the second mesh
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Figure 11: Distribution of the discretization error (left) and its estimate (right) on the second mesh
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Figure 12: Distribution of the algebraic error (left) and its estimate (right) on the second mesh
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Figure 13: Distribution of the total error (left) and its estimate (right) on the third mesh
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Figure 14: Distribution of the discretization error (left) and its estimate (right) on the third mesh
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Figure 15: Distribution of the algebraic error (left) and its estimate (right) on the third mesh
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Figure 16: Distribution of the total error (left) and its estimate (right) on the fourth mesh
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Figure 17: Distribution of the discretization error (left) and its estimate (right) on the fourth mesh

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

7

8

9
x 10

−7

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

x 10
−7

Figure 18: Distribution of the algebraic error (left) and its estimate (right) on the fourth mesh
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Figure 19: Distribution of the total error (left) and its estimate (right) on the fifth mesh
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Figure 20: Distribution of the discretization error (left) and its estimate (right) on the fifth mesh
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Figure 21: Distribution of the algebraic error (left) and its estimate (right) on the fifth mesh
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Figure 22: Comparison of energy error (left) and of effectivity indices (right) for individual stopping criteria
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Figure 25: Distribution of the total error (left) and its estimate (right) on the first mesh
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Figure 26: Distribution of the discretization error (left) and its estimate (right) on the first mesh
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Figure 27: Distribution of the algebraic error (left) and its estimate (right) on the first mesh
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Figure 28: Distribution of the total error (left) and its estimate (right) on the second mesh

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01

0.02

0.03

0.04

0.05

0.06

Figure 29: Distribution of the discretization error (left) and its estimate (right) on the second mesh
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Figure 30: Distribution of the algebraic error (left) and its estimate (right) on the second mesh
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Figure 31: Distribution of the total error (left) and its estimate (right) on the third mesh
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Figure 32: Distribution of the discretization error (left) and its estimate (right) on the third mesh
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Figure 33: Distribution of the algebraic error (left) and its estimate (right) on the third mesh
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Figure 34: Distribution of the total error (left) and its estimate (right) on the fourth mesh
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Figure 35: Distribution of the discretization error (left) and its estimate (right) on the fourth mesh
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Figure 36: Distribution of the algebraic error (left) and its estimate (right) on the fourth mesh
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Figure 37: Distribution of the total error (left) and its estimate (right) on the fifth mesh
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Figure 38: Distribution of the discretization error (left) and its estimate (right) on the fifth mesh
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Figure 39: Distribution of the algebraic error (left) and its estimate (right) on the fifth mesh
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Figure 40: Comparison of energy error (left) and effectivity indices (right) for individual stopping criteria
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