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Miroslav Rozložńıka,∗, Alicja Smoktunowiczb,∗, Jǐŕı Kopalc
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Abstract

We present a roundoff error analysis of the method for solving the linear least

squares problem minx ‖b−Ax‖2 with full column rank matrix A, using only

factors Σ and V from the SVD decomposition of A = UΣV T . This method

(called SNESV D here) is an analogue of the method of seminormal equations

(SNEQR), where the solution is computed from RTRx = AT b using only

the factor R from the QR factorization of A. Such methods have practical

applications when A is large and sparse and if one needs to solve least squares

problems with the same matrix A and multiple right-hand sides. However,

in general both SNEQR and SNESV D are not forward stable. We analyze

one step of fixed precision iterative refinement to improve the accuracy of the

SNESV D method. We show that, under the condition O(u)κ2(A) < 1, this
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method (called CSNESV D) produces a forward stable solution, where κ(A)

denotes the condition number of the matrix A and u is the unit roundoff.

However, for problems with only O(u)κ(A) < 1 it is generally not forward

stable, and has similar numerical properties to the corresponding CSNEQR

method. Our forward error bounds for the CSNESV D are slightly better than

for the CSNEQR since the terms O(u2)κ3(A) are not present. We illustrate

our analysis by numerical experiments.
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1. Introduction

We study the numerical properties of some correction methods for semi-

normal equations for solving linear least squares problem

min
x
‖b− Ax‖, (1)

where A ∈ Rm×n has full column rank, m ≥ n = rank(A), b ∈ Rm and

‖ · ‖ denotes the Euclidean vector or matrix norm (depending on its argu-

ment). There exists only one solution x∗ ∈ Rn to (1) that satisfies the normal

equations

ATAx∗ = AT b. (2)

Therefore, x∗ = A†b, where A† = (ATA)−1AT denotes the pseudoinverse of

A. There are many algorithms for solving (1) using various factorizations of

the matrix A. For example, if we apply the Householder QR decomposition
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A = QR, where Q ∈ Rm×n has orthonormal columns (i.e. QTQ = In) and

R ∈ Rn×n is nonsingular upper-triangular, then the normal equations can be

written as RTRx∗ = RTQT b, so we can simply solve the system Rx∗ = QT b.

If m � n and we do not want to store the factor Q, we can use only the

R-factor and solve the seminormal equations (SNE) (cf.[3])

RTRx∗ = AT b. (3)

However, the numerical properties of these two methods are very different

(cf. [3]–[6]). A similar approach can be applied to other factorizations of A;

for example, if A = UΣV T , where U ∈ Rm×n has orthonormal columns with

UTU = In, V ∈ Rn×n is orthogonal and Σ has a simple structure (triangular,

bidiagonal, diagonal), then we can consider the class of equations

ΣTΣ(V Tx∗) = V T (AT b). (4)

In this paper, we consider only diagonal Σ, where the system (4) can be

solved very accurately. For the case when Σ is bidiagonal we refer to [7].

One of the goals of SNE in (3) is that we do not need Q, while in (4) we

do not store the matrix U but we need matrix V . The dimension n is often

much smaller than the other dimension m, so the solution of (4) can still be

very efficient.

We study the numerical properties of algorithms SNESV D and CSNESV D,

based on the SVD of A and described in Table 1. Our analysis is mostly mo-

tivated by Å. Björck’s paper [3] and that of Å. Björck and C.C. Paige [6] (see

also [1], [2], [4]). Throughout the paper we assume that the computed matrix

Σ̃ = diag(σ̃1, . . . , σ̃n) in floating point arithmetic is obtained by a backward
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Algorithm I (SNEQR)

Compute the upper-triangular factor R ∈ Rn×n of Householder QR

decomposition of A: A = QR, where Q ∈ Rm×n and QTQ = In.

Don’t store Q.

Solve the seminormal equations RTRx = AT b for x.

Algorithm II (SNESVD)

Find V ∈ Rn×n and Σ ∈ Rn×n of the SVD decomposition of A:

A = UΣV T , where U ∈ Rm×n and UTU = In. Don’t store U .

Solve the seminormal equations Σ2(V Tx) = V T (AT b) for x.

Algorithm III (CSNEQR)

Let x be computed by Algorithm I.

Compute r = b− Ax.

Solve RTR∆x = AT r for ∆x.

Update xnew = x+ ∆x.

Algorithm IV (CSNESVD)

Let x be computed by Algorithm II.

Compute r = b− Ax.

Solve Σ2(V T∆x) = V T (AT r) for ∆x.

Update xnew = x+ ∆x.

Table 1: Description of SNE and CSNE algorithms
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stable algorithm. It means that there exist matrix Û ∈ Rm×n with exactly

orthonormal columns and exactly orthogonal matrix V̂ ∈ Rn×n such that

Â = A+ ∆A = ÛΣ̃V̂ T , ‖∆A‖ ≤ O(u) ‖A‖, (5)

where u is the unit roundoff. The computed matrix Ṽ is close to V̂ , i.e.

Ṽ = V̂ + ∆V, ‖∆V ‖ ≤ O(u). (6)

We will not put any assumptions on the computed matrix Ũ here since its

properties will not have any influence upon our analysis. It is interest-

ing to notice that Σ̃T Σ̃ = V̂ T (ÂT Â)V̂ , hence our computed solution x̃ of

ΣTΣ(V Tx∗) = V T (AT b) will often be related to the solution of the perturbed

system of the normal equations ÂT Âx̂ = ÂT b.

The paper is organized as follows. Section 2 is devoted to the sensitivity

of the least squares problem and Section 3 the numerical stability of algo-

rithms for computing the least squares solution. In Section 4 we study the

numerical properties of the SNESV D method based on the SVD of A. In Sec-

tion 5 we give a roundoff error analysis of the corrected seminormal equations

CSNESV D. We show that the SNESV D method is not forward stable but

that the CSNESV D method, i.e. one step of iterative refinement, will usually

be enough to yield a stable solution to (1). In Section 6 we present some

numerical experiments in MATLAB to illustrate and compare the behaviour

of these algorithms.

Throughout the paper we use only the 2-norm and assume the standard

floating point arithmetic with the unit roundoff u (see Chapter 2 in [10]).

5



2. Perturbation analysis

We recall Wedin’s results (cf. [12], [11, pp. 49–51], [5, pp. 26–31], [10, pp.

382–384]) on the sensitivity of the least squares solution to small perturba-

tions in A and b.

Theorem 2.1. Let A ∈ Rm×n have full column rank with m ≥ n and b ∈ Rm.

Let x̂∗ be the exact solution of the least squares problem minx ‖b̂−Âx‖, where

Â = A+ ∆A, ‖∆A‖ ≤ εA‖A‖,

b̂ = b+ ∆b, ‖∆b‖ ≤ εb‖b‖

and A is the matrix in (1). Let r̂∗ = b̂ − Âx̂∗ and r∗ = b − Ax∗ be the

residuals for the perturbed and the original least squares problems. Assume

that εAκ(A) < 1, where κ(A) = ‖A‖ ‖A†‖ is the standard condition number

of the matrix A. Then rank(Â) = rank(A) = n and

‖x̂∗ − x∗‖ ≤
κ(A)

1− εAκ(A)

(
εA‖x∗‖+ εb

‖b‖
‖A‖

+ εA‖A†‖‖r∗‖
)
, (7)

‖r̂∗ − r∗‖ ≤ εA‖A‖‖x∗‖+ εb‖b‖+ εAκ(A)‖r∗‖. (8)

Remark 2.1. If x∗ 6= 0, then we can rewrite the bound (7) as follows

‖x̂∗ − x∗‖
‖x∗‖

≤ εA κLS(A, b) + εbκb(A, b)

1− εAκ(A)
, (9)

where

κLS(A, b) = κ(A)

(
1 + κ(A)

‖r∗‖
‖A‖ ‖x∗‖

)
(10)

is the condition number of the LS problem with respect to small perturbations

in A (see p.31 of [5]) and

κb(A, b) =
‖A†‖‖b‖
‖x∗‖

(11)
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is the condition number of the least squares problem with respect to small

perturbations in b.

Unlike for a square nonsingular linear system Ax = b, the sensitivity of

the LS problem depends strongly not only on the matrix A, but also on the

right-hand side vector b. The incompatibility of the problem is measured by

ω(A, b) = κ(A)
‖r∗‖

‖A‖ ‖x∗‖
. (12)

We have κLS(A, b) = κ(A)(1+ω(A, b)), and due to b = Ax∗+r∗ and rT∗ Ax∗ =

0 we get ‖b‖2 = ‖Ax∗‖2 + ‖r∗‖2, so ‖Ax∗‖, ‖r∗‖ ≤ ‖b‖ ≤ ‖A‖‖x∗‖ + ‖r∗‖.

This leads to the lower and upper bounds for κb(A, b)

ω(A, b) ≤ κb(A, b) ≤ κ(A) + ω(A, b) ≤ κLS(A, b). (13)

If ω(A, b) = 0 (i.e. the system is compatible) then ‖b‖ = ‖Ax∗‖ ≤ ‖A‖‖x∗‖,

so κLS(A, b) = κ(A) ≥ κb(A, b). The situation is different in the case where

the factor ω(A, b) is large and the term proportional to κ2(A) dominates in

κLS(A, b). However, as indicated in [8, 9], in practice very often the linear

systems Ax ≈ b are close to being consistent and the corresponding quantities

ω(A, b) are moderate for most vectors b.

3. Numerical stability

In this paper, we study the forward stability of algorithms for computing

the least squares solution. More precisely, if the approximate solution x̃

satisfies the bound

‖x̃− x∗‖ ≤ O(u)
(
κ(A)‖x∗‖+ κ(A)‖A†‖‖r∗‖

)
(14)
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then we call x̃ a forward stable solution to the least squares problem (1). We

see that for x∗ 6= 0 we can rewrite the inequality (14) as

‖x̃− x∗‖
‖x∗‖

≤ O(u)κLS(A, b). (15)

Å. Björck proved that the seminormal equations method based on the back-

ward stable QR factorization of A, i.e. RTRx∗ = AT b, is not forward stable

[3], and a more general case was considered by Å. Björck and C.C. Paige in

[6]. However, they indicate (without a detailed proof) that if O(u)κ2(A) < 1

then one step of iterative refinement called the corrected seminormal equa-

tions method (CSNEQR) produces a forward stable solution to (1) in the

sense of (14). In addition, it was noted that the CSNEQR method is not

forward stable for O(u)κ(A) < 1. More precisely, Å. Björck proved (see The-

orem 3.1 and Theorem 3.2 in [3]) that the vectors x̃ and x̃new computed by

SNEQR and CSNEQR respectively, satisfy

‖x̃− x∗‖
‖x∗‖

≤ O(u)κ2(A) +O(u)κ(A)κb(A, b) +O(u2)κ3(A), (16)

‖x̃new − x∗‖
‖x∗‖

≤ O(u)κLS(A, b) +O(u2)κ2(A)κb(A, b) +O(u2)κ3(A).(17)

Our main results on SNESV D and CSNESV D in Sections 4 and 5 will be

of a similar type, but we assume the use of the SVD decomposition instead

of the QR factorization of A. In our error analysis we obtain error bounds

similar to (16) and (17).

4. Error analysis of Algorithm II

In this section we give a normwise analysis of Algorithm II that provides

some further insight.
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Lemma 4.1. Suppose that we have computed the SVD decomposition of the

matrix A, such that the assumptions (5)–(6) hold with Â = A+ ∆A and

‖∆A‖ ≤ O(u)‖A‖, O(u)κ(A) < 1. (18)

Then rank(Â) = rank(A) = n and the computed solution x̃ in floating point

arithmetic by Algorithm II satisfies

ÂT Â x̂∗ = ÂT b̂, b̂ = b+ ∆b, ‖∆b‖ ≤ O(u)κ(A)‖b‖, (19)

where x̂∗ = (I + F )x̃ with ‖F‖ ≤ O(u).

Proof. We make a standard assumption that the matrix-vector multiplica-

tion is backward stable, i.e. there exists a matrix E1 such that fl(AT b) =

(A + E1)
T b with ‖E1‖ ≤ O(u)‖A‖. Notice that the computed vector c̃ =

fl(Ṽ Tfl(AT b)) satisfies

c̃ = V̂ T (I + F1)(A+ E1)
T b = V̂ T (A+ E2)

T b, (20)

where ‖F1‖ ≤ O(u) and ‖E2‖ ≤ O(u)‖A‖. There exists a diagonal matrix F2,

such that the computed solution ỹ satisfies Σ̃2ỹ = (I +F2)c̃, ‖F2‖ ≤ O(u).

This together with (20) gives the identity

Σ̃2ỹ = (I + F2)V̂
T (A+ E2)

T b = V̂ T (I + F3)(A+ E2)
T b,

where ‖F3‖ ≤ O(u). Thus, we have

Σ̃2ỹ = V̂ T (A+ E)T b, ‖E‖ ≤ O(u)‖A‖. (21)

We see that x̃ = fl(Ṽ ỹ) = (I + F4)V̂ ỹ, ‖F4‖ ≤ O(u). It follows that

ỹ = V̂ T (I + F4)
−1x̃ = V̂ T (I + F )x̃, ‖F‖ ≤ O(u).
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This, together with (21), leads to Σ̃2V̂ T (I + F )x̃ = V̂ T (A + E)T b, which

we rewrite as V̂ Σ̃2V̂ T (I + F )x̃ = (A + E)T b. Due to ÂT Â = V̂ Σ̃2V̂ T , we

have ÂT Â (I + F )x̃ = (A + E)T b = (Â + E − ∆A)T b. Since rank(Â) = n,

we have the identity Â†Â = I. This gives (Â†Â)T = ÂT (Â†)T = I and

we can write (A + E)T b = ÂT (b + ∆b), ∆b = (Â†)T (E − ∆A)T b. Then

‖∆b‖ ≤ ‖Â†‖ (‖E‖+ ‖∆A‖)‖b‖ ≤ O(u)‖A‖‖Â†‖‖b‖. From (18), we obtain

‖Â†‖ = ‖(A+ ∆A)†‖ ≤ ‖A†‖
1−O(u)κ(A)

≤ (1 +O(u)κ(A))‖A†‖.

The proof is now complete.

From (19), we see that the computed vector x̃ is a slightly perturbed

solution of the LS problem with perturbed data Â and b̂. However, the

perturbation of the right-hand side εb = O(u)κ(A) is proportional to κ(A).

Theorem 4.1. Assume the hypothesis of Lemma 4.1. Let x∗ be the exact

solution to (1), r∗ = b− Ax∗ and x̃ be computed in floating point arithmetic

by Algorithm II and s̃ = b− Ax̃. Then we have

‖x̃− x∗‖ ≤ O(u)κ(A) ‖A†‖‖b‖ (22)

and

‖s̃− r∗‖ = ‖A(x̃− x∗)‖ ≤ O(u)κ(A) ‖b‖. (23)

Proof. Let x̂∗ = (I + F )x̃ be defined by (19). Applying Theorem 2.1 to

εA = O(u) and εb = O(u)κ(A) gives the following bound:

‖x̂∗ − x∗‖ ≤ O(u)κ(A)

(
‖x∗‖+ κ(A)

‖b‖
‖A‖

+ ‖A†‖‖r∗‖
)
. (24)

Since ‖r∗‖ ≤ ‖b‖ and ‖x∗‖ = ‖A†b‖ ≤ ‖A†‖‖b‖, we rewrite (24) as ‖x̂∗ − x∗‖ ≤

O(u)κ(A) ‖A†‖‖b‖. Substituting now for x̂∗ = (I + F )x̃, we get ‖x̃− x∗‖ ≤
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O(u)‖x̃‖ + O(u)κ(A) ‖A†‖‖b‖. The bound (22) follows immediately from

‖x̃‖ ≤ ‖x̃− x∗‖+ ‖x∗‖ and ‖x∗‖ ≤ ‖A†‖‖b‖.

It remains to prove (23). Let r̂∗ = b̂ − Âx̂∗. Considering now the result

(8) with the perturbations εA = O(u) and εb = O(u)κ(A), we get ‖r̂∗−r∗‖ ≤

O(u)‖A‖‖x∗‖ + O(u)κ(A) (‖b‖ + ‖r∗‖). Since ‖r∗‖ ≤ ‖b‖ and ‖A‖‖x∗‖ ≤

κ(A) ‖b‖, we obtain

‖r̂∗ − r∗‖ ≤ O(u)κ(A) ‖b‖. (25)

From (19), it follows that s̃− r̂∗ = b−Ax̃− b̂+Â(I+F )x̃ = (ÂF+∆A)x̃−∆b,

and so ‖s̃ − r̂∗‖ ≤ O(u)‖A‖‖x̃‖ + O(u)κ(A)‖b‖. By (22), we get ‖x̃‖ ≤

‖x∗‖ + O(u)κ(A) ‖A†‖‖b‖, hence ‖s̃ − r̂∗‖ ≤ O(u)(‖A‖‖x∗‖ + κ(A)‖b‖) +

O(u2)κ2(A)‖b‖. By the assumption (18) on the numerical ”nonsingularity”

of A, and noting that ‖A‖‖x∗‖ ≤ κ(A) ‖b‖, we have

‖s̃− r̂∗‖ ≤ O(u)κ(A) ‖b‖. (26)

Now it is easily seen that the bound (23) follows on from (25)-(26) and the

inequality ‖s̃− r∗‖ ≤ ‖s̃− r̂∗‖+ ‖r̂∗ − r∗‖.

5. Error analysis of Algorithm IV

Theorem 5.1. Let x̃, r̃, ∆x̃ and x̃new be computed by Algorithm IV in float-

ing point arithmetic. Under the hypothesis of Lemma 4.1 and for x∗ 6= 0, we

have
‖x̃new − x∗‖
‖x∗‖

≤ O(u)κLS(A, b) +O(u2)κ2(A)κb(A, b). (27)

Proof. We recall that first we compute the vector x̃ by Algorithm II and then

we compute r̃ = fl(b−Ax̃). The next step is to find an approximate solution

∆x̃ to the system ATAx = AT r̃ by Algorithm II, and then compute x̃new as
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an update of x̃ with the correction ∆x̃. From the proof of Theorem 4.1, we

have the following identities for the computed vectors x̃ and ∆x̃

x̃ = x∗ + e1, ‖e1‖ ≤ O(u)κ(A) ‖A†‖‖b‖, (28)

∆x̃ = A† r̃ + e2, ‖e2‖ ≤ O(u)κ(A) ‖A†‖‖r̃‖. (29)

The computed vector x̃new is given as

x̃new = fl(x̃+ ∆x̃) = x̃+ ∆x̃+ e3, ‖e3‖ ≤ u‖x̃+ ∆x̃‖. (30)

The computed residual r̃ is related to the true residual s̃ = b−Ax̃ as follows

r̃ = fl(b− Ax̃) = s̃+ f, ‖f‖ ≤ O(u)(‖b‖+ ‖A‖‖x̃‖). (31)

By (28), we get the bound ‖x̃‖ ≤ ‖x∗‖+ ‖e1‖, hence it follows that

‖f‖ ≤ O(u)(‖b‖+ ‖A‖‖x∗‖) +O(u2)κ2(A) ‖b‖. (32)

Due to (31), we have A†r̃ = A†s̃ + A†f , and using A†s̃ = x∗ − x̃, we get

A†r̃ = x∗ − x̃+ A†f . This identity, together with (29) and (30), gives

x̃+ ∆x̃ = x∗ + A†f + e2, x̃new − x∗ = A†f + e2 + e3. (33)

Thus, from (30) and (33), we have ‖e3‖ ≤ u(‖x∗‖+ ‖A†‖‖f‖+ ‖e2‖) and

‖x̃new − x∗‖ ≤ (1 + u)(‖A†‖‖f‖+ ‖e2‖) + u‖x∗‖. (34)

It remains to estimate ‖A†‖‖f‖ and ‖e2‖. From (32) we obtain

‖A†‖‖f‖ ≤ O(u)(‖A†‖‖b‖+ κ(A)‖x∗‖) +O(u2)κ2(A) ‖A†‖‖b‖. (35)

From the second statement (23) of Theorem 4.1 it follows that

‖s̃‖ ≤ ‖r∗‖+O(u)κ(A)‖b‖. (36)
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The bound (36) and (32), together with the assumption O(u)κ(A) < 1 on the

numerical ”nonsingularity” of A and the inequality ‖x∗‖ ≤ ‖A†‖‖b‖, yields

the bound ‖r̃‖ ≤ ‖r∗‖+O(u)κ(A)‖b‖. The bounds (29), (32), (35) and (36)

yield

‖A†‖‖f‖+ ‖e2‖ ≤ O(u)(κLS(A, b) + κb(A, b))‖x∗‖+O(u2)κ2(A) ‖A†‖‖b‖.

We see that this together with (34) and the inequality κb(A, b) ≤ κLS(A, b)

gives the final bound

‖x̃new − x∗‖ ≤ O(u)
(
κLS(A, b) +O(u)κ2(A) κb(A, b)

)
‖x∗‖.

The proof is now complete.

Remark 5.1. How do we interpret Theorems 4.1- 5.1? We have derived

the bounds (22) and (27). We see that if x∗ 6= 0 then the vectors x̃ and

x̃new computed by Algorithm II (SNESV D) and Algorithm IV (CSNESV D)

respectively, satisfy

‖x̃− x∗‖
‖x∗‖

≤ O(u)κ(A)κb(A, b) (37)

and

‖x̃new − x∗‖
‖x∗‖

≤ O(u) [κLS(A, b) + (O(u)κ(A))κ(A)κb(A, b)] . (38)

These results are similar to the ones obtained by Å. Björck for Algo-

rithm I and Algorithm III respectively, but now the terms O(u2)κ3(A) are

not present (see Theorem 3.1 and Theorem 3.2 in [3]). In this sense, the

numerical properties of Algorithm II and Algorithm IV based on the SVD of

A are similar to their counterparts based on the QR decomposition of A.

13



How do we compare the bounds (37) and (38) to (15), that is, when

Algorithms II and IV are forward stable in the sense of (15)? We recall that

κLS(A, b) = κ(A) + κ(A)ω(A, b),

where ω(A, b) is defined in (12).

Consider first the case where ω(A, b) � κ(A). From this and (11)-(13),

it follows that κLS(A, b) and κ(A)κb(A, b) are of order κ(A)ω(A, b) . The

bound (38) contains two parts. We see that the second term in the bound

(38), i.e., (O(u)κ(A))κ(A)κb(A, b), will also be of order κ(A)ω(A, b) . The

conclusion is that both Algorithms II and IV are forward stable and iterative

refinement is not necessary in this case.

Now consider the situation where ω(A, b) = O(1). Then κLS(A, b) ≈ κ(A)

and κ(A) ≤ κ(A)κb(A, b) / κ2(A), so

κ(A) +O(u)κ2(A) / κ(A) + (O(u)κ(A))κ(A)κb(A, b) ≤ κ(A) +O(u)κ3(A).

This shows why Algorithm IV has better numerical properties than Algo-

rithm II for O(u)κ(A) < 1. It also indicates that the condition O(u)κ2(A) <

1 is needed for forward stability of Algorithm IV, and explains why, in gen-

eral, Algorithms II and IV (likewise Algorithms I and III) are not forward

stable. This is also made visible by our numerical experiments in the follow-

ing section.

6. Numerical experiments

In this section we illustrate our theoretical results. All experiments were

performed using MATLAB with unit roundoff u = 1.1·10−16. We assume two
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extreme cases, where the least squares solution x∗ is equal to the right singu-

lar vector corresponding to the smallest or to the largest singular value of the

matrix A. As it will be clear from the results, the correction step is impor-

tant, especially for problems with solutions close (equal) to the right singular

vectors corresponding to the largest singular values. The problem with di-

mensions m = 20 and n = 7 is defined by the singular value decomposition of

the matrix A = UΣV T , where U and V are orthogonal matrices with corre-

sponding dimensions generated by the orthog subroutine from the gallery in

MATLAB (we consider only the first n columns for matrix U). The matrix

Σ is a diagonal matrix with the singular values given as σi(A) = 106−1.5i for

i = 1, . . . , n. It is clear then that κ(A) = 109. Thus we consider two problems

with the solutions x1 and x2 given by two columns in the matrix V corre-

sponding to the largest and smallest singular values, respectively. This leads

to the right hand side vectors b1 = Ax1 with κb(A, b1) = κ(A) and b2 = Ax2

with κb(A, b2) = 1. Finally we take vector h as the scaled (n+ 1)-st column

of the orthogonal matrix that generates the matrix U with ‖h‖ = σn(A). It

is clear then that ATh = 0 and κLS(A, b) ≈ κ(A) for all problems with the

residual norm smaller than ‖h‖. Tables 2 and 3 summarize our numerical

results. The first rows correspond to the case of the over-determined systems

Ax1 = b1 and Ax2 = b2 with the solutions x1 and x2. In the subsequent rows

we have increased the residual norm of the least squares problem via the

appropriate scaling of the vector h. The norms of relative errors are scaled

by κLS(A, b) and thus correspond to the theoretical bound (27). We see that

SNESV D is satisfactory if the solution x2 is equal to the right singular vector

corresponding to the smallest singular value. This is no longer true for the
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solution x1 equal to the right singular vector corresponding to the norm of

A. In this case the refinement step in the CSNESV D method can significantly

improve the accuracy of the computed solution. In addition, our problems

almost meet the assumption that O(u)κ2(A) ≤ 1 and so CSNESV D computes

forward stable approximate solutions.

This is not true for a similar example, where we fix the residual norm

as ‖h‖ = 10−10 and generate the system matrices A in the same way as

in the first experiment but with σ1(A) = 1 and we change their condition

numbers in order to have O(u2)κ3(A) ≈ 1. We take again the right hand

side vectors as b1 = Ax1, where x1 are the left singular vectors corresponding

to the largest singular values of A so that κb(A, b1) = κ(A). It is clear then

that for sufficiently small residual norms ‖h‖ we have κLS(A, b) ≈ κb(A, b).

The numerical results are summarized in Table 4. In this case the refinement

step in CSNESV D does not significantly improve the accuracy of the solution

computed by SNESV D for some problems and therefore it does not deliver

forward stable approximate solutions.

7. Conclusions

In this paper we have considered two methods for the solution of the

least squares problems which are based only on the factors Σ and V from

the SVD decomposition of the matrix A. We have observed that while the

SNESV D method (Algorithm II) is not forward stable, for the CSNESV D

method (Algorithm IV), i.e. one step of iterative refinement, it will usually

be enough to yield a stable solution to (1). This method could be a method

of choice, especially when the matrix A is ’close’ to rank deficient.
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b κLS(A, b) κb(A, b) ω(A, b) ‖x̃−x1‖
‖x1‖∗κLS(A,b)

‖x̃new−x1‖
‖x1‖∗κLS(A,b)

b1 1e+09 1e+09 0 9.9996e-10 3.9902e-15

b1 + 10−7 · h 1e+09 1e+09 1.0952e-07 9.9996e-10 5.0226e-15

b1 + 10−6 · h 1e+09 1e+09 1.0089e-06 9.9998e-10 8.2096e-15

b1 + 10−5 · h 1e+09 1e+09 9.9799e-06 9.9995e-10 5.1573e-15

b1 + 10−4 · h 1.0001e+09 1e+09 0.00010001 9.9986e-10 4.8555e-15

b1 + 10−3 · h 1.001e+09 1e+09 0.001 9.9897e-10 4.2514e-15

b1 + 10−2 · h 1.01e+09 1e+09 0.01 9.9006e-10 4.6066e-15

b1 + 10−1 · h 1.1e+09 1e+09 0.1 9.0906e-10 4.3416e-15

b1 + 100 · h 2e+09 1e+09 1 4.9998e-10 1.781e-15

b1 + 101 · h 1.1e+10 1e+09 10 9.0906e-11 2.9992e-16

b1 + 102 · h 1.01e+11 1e+09 100 9.9006e-12 4.9103e-17

b1 + 103 · h 1.001e+12 1e+09 1000 9.9899e-13 3.0604e-19

b1 + 104 · h 1.0001e+13 1e+09 10000 9.9988e-14 8.097e-18

b1 + 105 · h 1e+14 1e+09 1e+05 9.9997e-15 1.6214e-17

b1 + 106 · h 1e+15 1e+09 1e+06 9.9998e-16 1.0055e-18

b1 + 107 · h 1e+16 1e+09 1e+07 9.9998e-17 5.8677e-18

Table 2: Results for the least squares problem where b1 is such that κb(A, b1) = κ(A) = 109.
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b κLS(A, b) κb(A, b) ω(A, b) ‖x̃−x2‖
‖x2‖∗κLS(A,b)

‖x̃new−x2‖
‖x2‖∗κLS(A,b)

b2 1e+09 1 0 4.6511e-17 8.8649e-18

b2 + 10−7 · h 1e+09 1 1e-07 4.2913e-17 5.3251e-18

b2 + 10−6 · h 1e+09 1 1e-06 3.9881e-17 1.3674e-18

b2 + 10−5 · h 1e+09 1 1e-05 4.0147e-17 9.0393e-18

b2 + 10−4 · h 1.0001e+09 1 0.0001 4.2962e-17 1.1676e-17

b2 + 10−3 · h 1.001e+09 1 0.001 4.1998e-17 2.7233e-18

b2 + 10−2 · h 1.01e+09 1 0.01 4.2684e-17 9.828e-18

b2 + 10−1 · h 1.1e+09 1.005 0.1 4.1717e-17 1.8121e-18

b2 + 100 · h 2e+09 1.4142 1 1.597e-17 4.6848e-18

b2 + 101 · h 1.1e+10 10.05 10 6.3486e-18 8.9225e-18

b2 + 102 · h 1.01e+11 100 100 9.4034e-18 3.0071e-19

b2 + 103 · h 1.001e+12 1000 1000 1.2916e-18 3.8996e-18

b2 + 104 · h 1.0001e+13 10000 10000 2.4229e-18 7.1273e-18

b2 + 105 · h 1e+14 1e+05 1e+05 2.8613e-18 5.8605e-19

b2 + 106 · h 1e+15 1e+06 1e+06 1.4121e-17 9.603e-19

b2 + 107 · h 1e+16 1e+07 1e+07 8.8245e-18 1.0793e-17

Table 3: Results for the least squares problem where κ(A) = 109 and b2 is such that

κb(A, b2) = 1.
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κ(A) κLS(A, b) κb(A, b) ω(A, b) ‖x̃−x1‖
‖x1‖∗κLS(A,b)

‖x̃new−x1‖
‖x1‖∗κLS(A,b)

1e+08 1.01e+08 1e+08 0.01 4.8055e-09 2.1666e-17

1.8e+08 1.8099e+08 1.7783e+08 0.017783 5.4896e-09 5.6397e-16

3.2e+08 3.2623e+08 3.1623e+08 0.031623 1.2488e-11 2.0615e-17

5.6e+08 5.9396e+08 5.6234e+08 0.056234 3.5798e-11 2.3623e-17

1e+09 1.1e+09 1e+09 0.1 9.0894e-10 4.477e-16

1.8e+09 2.0945e+09 1.7783e+09 0.17783 4.7743e-10 4.2348e-15

3.2e+09 4.1623e+09 3.1623e+09 0.31623 2.4025e-10 1.0291e-14

5.6e+09 8.7857e+09 5.6234e+09 0.56234 1.1382e-10 4.3864e-14

1e+10 2e+10 1e+10 1 4.6613e-11 3.6945e-16

1.8e+10 4.9406e+10 1.7783e+10 1.7783 2.0241e-11 3.9526e-13

3.2e+10 1.3162e+11 3.1623e+10 3.1623 7.5975e-12 5.0579e-14

5.6e+10 3.7246e+11 5.6234e+10 5.6234 2.6848e-12 3.359e-13

1e+11 1.1e+12 1e+11 10 9.0909e-13 9.9477e-14

1.8e+11 3.3401e+12 1.7783e+11 17.783 2.9939e-13 2.887e-13

3.2e+11 1.0316e+13 3.1623e+11 31.623 9.6936e-14 9.6935e-14

5.6e+11 3.2185e+13 5.6234e+11 56.234 3.1071e-14 7.9303e-15

1e+12 1.0099e+14 9.9997e+11 99.997 9.9015e-15 9.8987e-15

Table 4: Results for the least squares problem where b1 is such that κb(A, b1) = κ(A),

‖A‖ = 1, b = b1 + h where ‖h‖ = 1 · 10−10 .
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