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Abstract. We describe a new algorithm for calculating the topological
degree deg (f,B, 0) where B ⊆ Rn is a product of closed real intervals
and f : B → Rn is a real-valued continuous function given in the form
of arithmetical expressions. The algorithm cleanly separates numerical
from combinatorial computation. Based on this, the numerical part prov-
ably computes only the information that is strictly necessary for the fol-
lowing combinatorial part, and the combinatorial part may optimize its
computation based on the numerical information computed before. We
present computational experiments based on an implementation of the
algorithm. In contrast to previous work, the algorithm does not assume
knowledge of a Lipschitz constant of the function f , and works for arbi-
trary continuous functions for which some notion of interval arithmetic
can be defined.

1 Introduction

The notion of topological degree was introduced by Jan Brouwer [5] and was
motivated by questions in differential topology [26, 19]. The degree of a contin-
uous function is an integer, describing some topological properties of it. Degree
theory has many applications, including geometry [35], nonlinear differential
equations [24, 11, 25, 6], dynamical systems [20], verification theory [23], fixed
point theory [9] and others.

The presented algorithm is able to calculate the degree deg (f,B, 0) of any
real-valued continuous function f defined on a box B such that 0 /∈ f(∂B) and f
is given in the form of arithmetical expressions containing function symbols for
which interval enclosures can be computed [28, 34]. Computational experiments
show that for low-dimensional examples of simple functions (up to dimension
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10) the algorithm terminates in reasonable time.3 In addition to efficiency, the
algorithm has several advantages over previous work that we now describe in
more detail.

The idea of computing the degree algorithmically is not new. Since the seven-
ties, many algorithms were proposed and implemented that calculate the degree
deg (f,B, 0) of a function f defined on a bounded set B ⊆ Rn via a symbolical
expression. However, all these methods have various restrictions. One of the first
such methods was proposed by Erdelsky in 1973 [12]. His assumption is that the
function is Lipschitz, with a known Lipschitz constant. Thomas Neil published
another method for automatic degree computation in 1975 [31]. It is based on
the approximation of a multidimensional integral of a function derived from f
and its partial derivatives. Here, the error analysis uses only probabilistic meth-
ods. Other authors constructed algorithms that cover the boundary ∂B with a
large set of (n − 1)-simplices and use the information about the signs of fj on
the vertices of these simplices to calculate the degree in a combinatorial way.
However, the calculated result is proved to be correct only if a parameter is cho-
sen to be sufficiently large [21, 36, 37]. Boult and Sikorski developed a different
method for degree calculation in the eighties, but their algorithm also requires
the knowledge of a Lipschitz constant for f [4]. Later, many algorithms arose
where the degree was calculated recursively from partial information about f on
the boundary ∂B. For example, one has

deg (f,B, 0) = deg (f¬1, U, 0),

where f¬1 = (f2, . . . , fn) and U is a (d − 1)-dimensional open neighborhood of
{x ∈ ∂B| f¬1(x) = 0, f1(x) > 0} in ∂B. Aberth described an algorithm using
this formula, based on interval arithmetic [1]. This method was not implemented
and is rather a recipe than a precise algorithm. Later, Murashige published a
method for calculating the degree that uses concepts from computational ho-
mology theory [29].

Although a broad range of ideas and methods for automatic degree compu-
tation has been implemented, the effectivity of these algorithms decreases fast
with the dimension of B. For example, in the Murashige homological method,
computation of the degree of the identity function f(x) = x takes more than
100 seconds already in dimension 5 [29, Figure 3]. Other approaches were devel-
oped that calculate the degree of high-dimensional examples quickly, provided
the functions are of some special type. For instance, there exist effective degree
algorithms for complex functions f : Cn → Cn [10, 22, 23].

Our approach is based on a formalization, extension, and implementation of
the rough ideas of Oliver Aberth [1]. In our setting, we assume that the function
f is real valued and continuous, and it is possible to implement an interval-
valued function which computes box enclosures for the range of f over a box.
We don’t require the function to be differentiable and not even Lipschitz. This
enables us to work with algebraic expressions containing functions such as 3

√
x,

|x| and x sin 1
x
, but also with any function f that cannot be defined by algebraic

3 The program is accessible on topdeg.sourceforge.net.



expressions and only an algorithm is given that computes a superset J of f(I)
for any interval I s.t. the measure of J \ f(I) can be arbitrary small for small
intervals I. Throughout the paper, we assume that the domain of the function f
is a box (product of compact intervals), but the algorithm works without major
changes for more general domains, such as finite unions of boxes with more
complicated topology. This will be discussed at the end of Section 3.3.

From the algorithmic point of view, our algorithm consists of a numerical
part, that provably computes only information that is strictly necessary for de-
termining the degree, and a combinatorial part that computes the degree from
this information. The separation of those two parts has the advantage that both
can be used and improved independently. The first, numerical part covers the
boundary of a d-dimensional set Ω with (d− 1)-dimensional regions D1, . . . , Dm

where a particular component fl of f has constant sign. The combinatorial part
recursively gathers the information about the signs of the remaining components
of f on ∂Dj . All the sets are represented as lists of oriented boxes. They do not
have to represent manifolds and we allow the boundary of these sets to be com-
plicated (see Def. 4). In this setting, it is computationally nontrivial to identify
the boundary ∂Dj of a d-dimensional set embedded in Rn and to decompose
the boundary into a sum of “nice” sets. Instead of doing this, we calculate an
“over-approximation” of ∂Dj that is algorithmically simpler and then prove that
it has no impact on the correctness of the result. This involves some theoreti-
cal difficulties whose solution necessitates the development of several technical
results.

Some interest in automatic degree computation is motivated by verification
theory. Methods have been developed for automatic verification of the satisfia-
bility of a system of n nonlinear equations in n variables, written concisely as
f(x) = 0, where f : B ⊆ Rn → Rn is a continuous function. Most of these
methods first find small boxes K that potentially contain a root of f and then
try to formally prove the existence of a root in such a box K [27, 33, 16, 15] using
tests based on theorems such as the Kantorovich theorem, Miranda theorem, or
Borsuk theorem. From those, the test based on Borsuk theorem is the most pow-
erful [2, 15]. It can be easilly shown that the assumptions of Miranda theorem
imply that deg (f,K, 0) = ±1 and the assumption of Borsuk theorem imply that
the degree is an odd number. It is well known that deg (f,K, 0) 6= 0 implies the
existence of a root of f in K. An efficient test developed by Beelitz can verify
that the degree is ±1, if it is ±1, and hence prove the existence of a solution [3].
By not restricting oneself to degree ±1 but computing the degree in general, one
can prove the existence of a root of f in all cases that are robust in a certain
sense [8, 14].

The second section contains the main definitions needed from topological
degree theory—Theorem 1 is a fundamental ingredient of our algorithm. Section
3 describes the algorithm itself and its connection to Theorem 1. In Section
4, we present some experimental results. The last section contains the proof of
two auxiliary lemmas that we need throughout the paper. These proofs do not



involve deep ideas but are quite long and technical—hence the separate section
at the end of the paper.

2 Mathematical Background

2.1 Definitions and Notation

In this section, we first summarize the definition and main characteristics of the
topological degree on which there exists a wide range of literature, such as [13,
32]. Degree theory works with continuous maps between oriented manifolds,
and in order to represent these topological objects on computers we will then
introduce Definitions 1 to 6. Finally, the original Theorem 1 will be the main
ingredient of our algorithm for computing the topological degree.

Let Ω ⊆ Rn be open and bounded, f : Ω̄ → Rn continuous and smooth (i.e.,
infinitely often differentiable) in Ω, p /∈ f(∂Ω). For regular values p ∈ Rn (i.e.,
values p such that for all y ∈ f−1(p), det f ′(y) 6= 0), the degree deg (f,Ω, p) is
defined to be

deg (f,Ω, p) :=
∑

y∈f−1(p)

sign det f ′(y). (1)

This definition can be extended for non-regular values p in a unique way, such
that for given f and Ω, deg (f,Ω, p)—as a function in p—is locally constant on
the connected components of Rn \ f(∂Ω) [26].

Here we give an alternative, axiomatic definition, that determines the degree
uniquely. For any continuous function f : Ω̄ → Rn s.t. 0 /∈ f(∂Ω) the degree
deg (f,Ω, p) is the unique integer satisfying the following properties [13, 32, 17]:

1. For the identity function I, deg (I,Ω, p) = 1 iff p is in the interior of Ω.
2. If deg (f,Ω, p) 6= 0 then f(x) = p has a solution in Ω.
3. If there is a continuous function (a “homotopy”) h : [0, 1] × Ω̄ → Rn such

that p /∈ h([0, 1]× ∂Ω), then deg (h(0, ·), Ω, p) = deg (h(1, ·), Ω, p).
4. If Ω1∩Ω2 = ∅ and p /∈ f(Ω̄ \ (Ω1∪Ω2)), then deg (f,Ω, p) = deg (f,Ω1, p)+

deg (f,Ω2, p).
5. For given f and Ω, deg (f,Ω, p)—as a function in p—is constant on any

connected component of Rn\f(∂Ω).

This can be generalized to the case of a continuous function f : M → N ,
whereM and N are oriented manifolds of the same dimension andM is compact.
If f is smooth, f ′(y) denotes the matrix of partial derivatives of some coordinate
representation of f and formula (1) is still meaningful. For example, if f is a
scalar valued function from an oriented curve c (i.e., an oriented set of dimension
1) to R and f 6= 0 on the endpoints of c, then deg (f, c, 0) is well defined. If
f : M → N is a function between two oriented manifolds without boundary,
then the degree deg (f) is defined to be deg (f,M, p) for any p ∈ f(M).

A simple consequence of the degree axioms is that for a continuous f : Ω̄ ⊆
Rn → Rn, p /∈ f(∂Ω) implies that deg (f,Ω, p) = deg (f − p,Ω, 0). So we will be
only interested in calculating deg (f,Ω, 0).



We will represent geometric objects like manifolds, orientation, boundaries
and functions in a combinatorial way, using the following definitions.

Definition 1. A k-dimensional box (simply k-box) in Rn is the product of k
non-degenerate closed intervals and n− k degenerate intervals (one-point sets).
A sub-box of a k-box A is any k-box B s.t. B ⊆ A.

Definition 2. The orientation of a k-box is a number from the set {1,−1}. An
oriented box is a pair (B, s) where B is a box and s its orientation. We say that
B1 is an oriented sub-box of an oriented box B, if B1 ⊆ B, the dimensions of
B and B1 are equal and the orientations are equal.

Definition 3. Let B = I1 × I2 × . . . × In be an oriented d-box in Rn with ori-
entation o. Let, for every i ∈ {1, . . . , n}, [ai, bi] = Ii. Assume that the intervals
Ij1 , . . . Ijd are non-degenerate, j1 < j2 < . . . < jd, the other intervals are degen-
erate (one-point) intervals. For i ∈ {1, . . . , d}, the (d− 1)-dimensional boxes

F−
i := {(x1, . . . , xn) ∈ B |xji = aji} and F+

i := {(x1, . . . , xn) ∈ B |xji = bji}

are called faces of B. Any sub-box of a face is called a sub-face of B. If we choose
the orientation of F+

i to be (−1)i+1o and the orientation of F−
i to be (−1)io,

then we call F±
i oriented faces of B. An oriented sub-box of an oriented face is

called oriented sub-face. The orientation of the oriented faces and sub-faces is
called the induced orientation from the orientation of B.

Definition 4. An oriented cubical set Ω is a finite set of oriented boxes B1, . . . , Bk

of the same dimension d such that the following conditions are satisfied:

1. For each i 6= j, the dimension of Bi ∩Bj is at most (d− 1).
2. Whenever Bi ∩Bj = Bij is a (d− 1)-dimensional box, then the orientations

of Bi and Bj are compatible. This means that Bij has an opposite induced
orientation as a sub-face of Bi as the orientation induced from Bj.

The dimension of an oriented cubical set is the dimension of any box it contains.
If Ω is an oriented cubical set, we denote by |Ω| the set it represents (the union
of all the oriented boxes contained in Ω).

An oriented cubical set is sketched in Figure 1. An immediate consequence
of the definition is that each sub-face F of a box B in an oriented cubical set
Ω is a boundary sub-face of at most two boxes in Ω. Note that an oriented
cubical set does not have to represent a manifold, because some boxes may have
lower-dimensional intersection, like B1 and B4 in Figure 1.

Definition 5. An oriented boundary of an oriented d-dimensional cubical set
Ω is any set of (d− 1)-dimensional oriented boxes ∂Ω, such that

1. Any two boxes in ∂Ω have intersection of dimension at most d− 2.
2. For each F∂ ∈ ∂Ω, and each (d − 1)-dimensional sub-box F ′ of F∂ , there

exists exactly one box B ∈ Ω such that F ′ is an oriented sub-face of B.
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Fig. 1. Two-dimensional oriented cubical set, union of four oriented boxes. The bound-
ary face B12, for example, has opposite orientation induced from the box B1 and from
B2.

3. ∂Ω is maximal, that is, no further box can be added to ∂Ω such that condi-
tions 1 and 2 still hold.

An oriented cubical set and its oriented boundary are sketched in Figure 2.
Geometrically, this definition describes the topological boundary of an oriented
cubical set Ω and we denote the union of all oriented boxes in ∂Ω by |∂Ω|.
Clearly, ∂|Ω| = |∂Ω|, the meaning of the left hand side being the topological
boundary of the set |Ω|. Note that if Ω is a d-dimensional oriented cubical set
and ∂Ω an oriented boundary of Ω, then each sub-face x of some box in Ω s.t.
x ∩ |∂Ω| is at most (d− 2)-dimensional, is a sub-face of exactly two boxes in Ω
with opposite induced orientation (see B12 in Figure 1).

An oriented boundary of an oriented cubical set does not have to form an
oriented cubical set, because the second condition of Definition 4 may be violated
(for a counter-example, see Fig. 3 where the 1-boxes a and c have 0-dimensional
intersection but not compatible orientations).

The notion of topological degree can be naturally generalized to oriented
cubical sets. So, if f is a continuous function from a d-dimensional oriented
cubical set Ω to Rd such that 0 /∈ f(∂|Ω|), then deg (f,Ω, 0) is well-defined,
extending the definition of deg (f,Ω, 0) for oriented manifolds Ω. 4

Finally, we will represent functions as algorithms that can calculate a superset
of f(B) for any given box B.

Definition 6. Let Ω ⊆ Rn. We call a function f : Ω → R interval-computable
if there exists a corresponding algorithm I(f) that, for a given box B ⊆ Ω with

4 For an oriented cubical set Ω, one can define an oriented manifold Ωǫ := {x ∈
int(|Ω|) | dist(x, ∂Ω) ≥ ǫ} for a small enough ǫ and define the degree to be
deg (f,Ωǫ, 0)
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Fig. 2. Oriented cubical set Ω = {B1, B2} with orientation of both boxes 1 and its
oriented boundary ∂Ω = {a1, . . . , a11} with orientation indicated by the arrows. For
example, a1 has orientation −1 (the arrow goes in the opposite direction as the vertical
axis), a2 has orientation 1 etc.

rational endpoints and positive diameter, computes a closed (possibly degenerate)
interval I(f)(B) such that

– I(f)(B) ⊇ {f(x) | x ∈ B}, and
– for every ε > 0 there is a δ > 0 such that for every box B with 0 < diam(B) <

δ, I(f)(B) < ε.

We call a function f = (f1, . . . , fn) : Ω → Rn interval-computable iff each fi is
interval-computable. In this case, the algorithm I(f) returns a tuple of intervals,
one for each fi.

Usually such functions are written in terms of symbolic expressions contain-
ing symbols denoting certain basic functions such as rational constants, addition,
multiplication, exponentiation, trigonometric function and square root. Then,
I(f) can be computed from the expression by interval arithmetic [30, 28]. The
interval literature usually calls an interval function fulfilling the first property of
Definition 6 “enclosure”. Instead of the second property, it often uses a slightly
stronger notion of an interval function being “Lipschitz continuous” [30, Sec-
tion 2.1]. We will use interval computable functions and expressions denoting
them interchangeably and assume that for an expression denoting a function f ,
a corresponding algorithm I(f) is given.

2.2 Main Theorem

Now we define the combinatorial information we use to compute the degree, and
prove that it is both necessary and sufficient for determining the degree.

Definition 7. A d-dimensional sign vector is a vector from {−, 0,+}d.
Let S be a set of oriented (d−1)-boxes. A sign covering of S is an assignment

of a d-dimensional sign vector to each a ∈ S. For a sign covering SV and a ∈ S
we will denote this sign vector by SVa, and its i-th component by (SVa)i.



A sign covering is sufficient if each sign vector contains at least one non-zero
element.

A sign covering is a sign covering wrt. a function f : (∪a∈S a) → Rd

with components (f1, . . . , fd), if for every oriented box a ∈ S and for every
i ∈ {1, . . . , d}, (SVa)i 6= 0 implies that fi has constant sign (SVa)i on a.

In the following we will often recursively reduce proofs/algorithms for d-
dimension oriented cubical sets, to proofs/algorithms on their oriented boundary.
Since—as we have already seen—an oriented boundary of an oriented cubical
set does not necessarily have to form an oriented cubical set, we will need the
following lemma that will allow us to decompose this oriented boundary again
into oriented cubical sets:

Lemma 1. Let Ω be a d-dimensional oriented cubical set, ∂Ω an oriented bound-
ary of Ω, SV a sufficient sign-covering of ∂Ω with respect to f : |Ω| → Rd and
assume that for each a ∈ ∂Ω, SVa has exactly one nonzero component. Let
Λl′,s′ := {a ∈ ∂Ω | (SVa)l′ = s′} for each l′ ∈ {1, . . . , d} and s′ ∈ {+,−}. Then
there exist oriented cubical sets D1, . . . , Dm and corresponding oriented bound-
aries ∂D1, . . . , ∂Dm s.t. the following conditions are satisfied:

1. ∪j∈{1,...,m}Dj = ∂Ω,
2. Di ∩Dj = ∅ for i 6= j,
3. For each i, there exists l(i), s(i) such that Di ⊆ Λl(i),s(i),
4. Each b ∈ ∂Di is a sub-face of some a ∈ Λl′,s′ where l′ 6= l(i).

The lemma is illustrated in Figure 3. The proof of this lemma is technical and
we postpone it to the appendix in order to keep the text fluent.

Theorem 1. Let Ω be an oriented d-dimensional cubical set, ∂Ω an oriented
boundary of Ω and f : |Ω| → Rd a continuous function with components (f1, . . . , fd)
such that 0 /∈ f(|∂Ω|). Then a sign covering SV of ∂Ω wrt. f determines the
degree deg (f,Ω, 0) uniquely if and only if it is sufficient.

Proof. We first prove that sufficiency of the sign covering implies a unique degree.
We proceed by induction on the dimension of Ω. If Ω is a 1-dimensional oriented

cubical set
−→
ab, then deg (f,Ω, 0) = 1

2 (sign (f(b))− sign (f(a))) is determined by
the sufficient sign covering of ∂Ω wrt. f . Let d > 1. For each box a ∈ ∂Ω,
choose an index i(a) such that (SVa)i(a) =: sa 6= 0. For all l′ ∈ {1, . . . , d}
and s′ ∈ {+,−}, let Λl′,s′ := {a ∈ ∂Ω | i(a) = l′, sa = s′}. It follows from
Lemma 1 that we may decompose ∂Ω into oriented cubical sets Dj and oriented
boundaries ∂Dj , j = 1, . . . ,m such that Di ⊆ Λl(i),s(i) for unique l(i), s(i) and
each x ∈ ∂Di is a sub-face of some b ∈ Λl′,s′ where l′ 6= l(i). For each l′,
define f¬l′ := (f1, . . . , fl′−1, fl′+1, . . . , fn). Then 0 /∈ f¬l(i)(|∂Di|) and the degree
deg (f¬l(i), Di, 0) is defined. Let l ∈ {1, . . . , d} and s ∈ {+,−} be arbitrary. It
follows from [22, Theorem 2.2] and [36, Section 4.2] that

deg (f,Ω, 0d) = s (−1)l+1
∑

i; l(i)=l and s(i)=s

deg (f¬l, Di, 0d−1) (2)



B1

B2

(

+

0

)

(

+

0

)

(

+

0

)

(

+

0

)

(

0

−

)

(

0

−

)

(

0

+

)

(

−

0

)

(

0

−

)

a

b

c

d

Fig. 3. Illustration of Lemma 1. The boundary of the oriented cubical set {B1, B2}
contains nine boxes and Λ1,+ = {a, b, c, d} are the boundary boxes with sign vector
(

+
0

)

. This can be decomposed into oriented cubical sets D1 = {a, b} and D2 = {c, d}.
The boundaries of D1 and D2 consist of the points marked as × and each of them is
a sub-face of some box with sign vector different from

(

+
0

)

.

where 0k ∈ Rk is the k-dimensional zero.

For each set Di from the sum on the right hand side, fl(i) has sign s(i) on
Di. Each x ∈ ∂Di is a sub-box of some b ∈ Λl′,s′ where l′ 6= l(i), so we may
assign a new sign vector for x by deleting the l(i)-th component from SVb. In
this way, we define a sufficient sign covering of ∂Di wrt. f¬l(i) and the degree
deg (f,B, 0) can be then calculated recursively using (2).

Now assume that the sign covering of ∂Ω is not sufficient. We will prove that
in this case, the degree is not uniquely determined.

Let F ∈ ∂Ω be a (d−1)-dimensional box such that SVF = (0, . . . , 0). Choose
m ∈ Z to be arbitrary. We will construct a function G : |Ω| → Rd such that the
sign covering of ∂Ω is a sign covering with respect to G and deg (G,Ω, 0) = m.

Denote the oriented manifold with boundary ∂Ω \F ◦ by S1. ∂Ω is a union of
the oriented manifolds S1 and F , the boundaries ∂F and ∂S1 are equal with op-
posite orientations, homeomorphic to the sphere Sd−2. The degree deg (f,Ω, 0) =
deg (f̃) where f̃ = f/|f | : ∂Ω → Sd−1 ⊆ Rd is a map to the sphere. Let p ∈ Sd−1

be such that p /∈ f̃(∂S1), let α = deg (f̃ , S1, p) and m′ = m− α. We construct a
map g : F → Sd−1 such that deg (g, F, p) = m′. The homotopy group πk(S

l) = 0
for k < l, so each map from a (d− 2)-sphere to the (d− 1)-sphere is homotopic
to a constant map. Let us define g1 = f̃ on ∂F ≃ Sd−2. Then g1 : ∂F → Sd−1 is
homotopic to a constant map. There exists a sub-box F ′ ⊆ F and a continuous
extension g2 : F \ (F ′)◦ → Sd−1 of g1 such that g2 = g1 = f̃ on ∂F and g2 is
constant on ∂F ′ ≃ Sd−2. Using the fact that πd−1(S

d−1) = Z, there exists a
map h : Sd−1 → Sd−1 of degree m′. It follows from the identity Sd−1 ≃ F ′/∂F ′

that we can extend g2 to a map g3 : F → Sd−1 such that deg (g3, F, p) = m′.



Finally, extend g3 to a map g : ∂Ω → Sd−1 by g = f̃ on S1. Then

deg (g) = deg (g, S1, p) + deg (g, F, p) = α+m′ = m.

Let i : Sd−1 →֒ Rd be the inclusion. Multiplying i ◦ g by some scalar valued
function, we can obtain a function g′ : ∂Ω → Rd such that g′ = f on ∂Ω.
Extending g′ : ∂Ω → Rd to a continuous G : Ω → Rd arbitrarily (this is possible
due to Tietze’s Extension Theorem [7, Thm. 4.22],[38]) we obtain a function
G such that the original sign covering is a sign covering of ∂Ω wrt. G and
deg (G,Ω, 0) = m. This completes the proof. �

3 Algorithm description

3.1 Informal Description of the Algorithm

We describe now our algorithm for degree computation of an interval computable
function. If f : B → Rn is an interval computable function nowhere zero on
the boundary ∂B, then the corresponding interval computation algorithm I(f)
from Definition 6 may be used to construct a sufficient sign covering of ∂B wrt.
f . This sign covering will be represented as a list of oriented boxes and sign
vectors. The main ingredient of the algorithm is Equation (2) from the proof of
Theorem 1. For some index l and sign s, we select all the boxes a with (SVa)l =
s. From Lemma 1, we know that these boxes form some oriented cubical sets
D1, . . . , Dm. Then a new list of (n−2)-dimensional oriented boxes is constructed
that covers the boundaries ∂Dj ofDj . Possibly subdividing boxes in this new list,
we assign (n− 1)-dimensional sign vectors to its elements in such a way that we
obtain a sufficient sign covering of ∪j∂Dj wrt. f¬l := (f1, . . . , fl−1, fl+1, . . . , fn).
Equation (2) is used for a recursive dimension reduction.

We work with lists of oriented boxes and sign vectors rather than with sets,
because it will be convenient for our implementation to allow an oriented box
to be contained in a list multiple times. However, we will usually ignore the
order of the list elements (i.e., the algorithm actually is based on multi-sets
which we implement by lists). For two lists L1 and L2, we denote by L1+L2 the
concatenation of L1 and L2 and will also use the symbol

∑

for the concatenation
of several lists. We use the notation a ∈ L if a is contained in L at least once. If
L1 is a sub-list of L, we denote by L−L1 the list L with the sub-list L1 omitted.

Now we define a version of the notion of sign covering based on lists:

Definition 8. A sign list (of dimension d) is a list of pairs consisting of

– an oriented d-box, and
– a corresponding (d+ 1)-dimensional sign vector.

A sign list is sufficient, iff each sign vector contains at least one non-zero ele-
ment. A sign list of dimension d is a sign list wrt. a function f :

⋃

a∈L a → Rd+1

iff for each element a ∈ L and corresponding sign vector SVa = (s1, . . . , sd+1),
for all i ∈ {1, . . . , d+ 1}, si 6= 0 implies that fi has sign si on a.



By misuse of notation, we will sometimes refer to the elements of a sign list
as pairs consisting of an oriented box and a sign vector, and sometimes just as
an oriented box.

The basic ingredient of the algorithm is a recursive function Deg with input
a sufficient sign list and output an integer. This function involves no interval
arithmetic and is purely combinatorial. For an input that is a sufficient sign list
L wrt. f such that the boxes in L form an oriented boundary of an oriented
cubical set Ω, this function returns deg(f,Ω, 0). If the Deg function input is a 0-

dimensional sign list L, then the output
∑

p∈L

orientation(p)×sp
2 is returned. This

is compatible with the the formula for the degree of a function on an oriented

edge, deg (f,
−→
ab, 0) = sign f(b)−sign f(a)

2 .

If the input consists of oriented d-boxes and sign vectors of dimension d+ 1
for d > 0, we choose l ∈ {1, 2, . . . , d + 1} and s ∈ {+,−} and compute a list
of boxes Lsel (the selected boxes) having s as the l-th component of the sign
vector. We split the boundary faces of all selected boxes until each face x of a
selected box a is either contained in some non-selected box or the intersection
of x with each non-selected box is at most (d− 2)-dimensional. For each face x
of a selected box a that is a sub-face of some non-selected box b, we delete the
l-th entry from the sign vector of b and assign this as a new sign vector to x.
The list of all such oriented (d − 1)-boxes and their sign vectors is denoted by
faces . This is a sufficient sign list wrt. f¬l and s (−1)l+1 Deg(faces) is returned.

The choice of l and s has no impact on the correctness of the algorithm but
can optimize its speed. We choose l ∈ {1, 2, . . . , d + 1} and s ∈ {+,−} in such
a way that the number of selected boxes is minimal. See Section 4 for a more
detailed discussion of this issue. The algorithm for calculating deg (id, [−1, 1]2, 0),
l = 1 and s = 1 is displayed in Figure 4.
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(B, 1)(+)
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New sign vector

Fig. 4. Description of the recursive step for the identity function on the oriented box
([−1, 1]2,+). For the choice l = 1 and s = +, we have one selected box AB. The degree

functions returns Deg(((B, 1), (+)), ((A,−1), (−))) = 1+(−1)(−1)
2

= 1 (in this notation,
(B, 1) is an oriented zero-dimensional box and (+) its sign-vector). From the boxes BC

and DA, only the sign information is used and the box CD is ignored.



If the input of the Deg function is a sign list representing a boundary of an
oriented cubical set, then the list of selected boxes is exactly the set Λl,s from
Lemma 1. We will prove in Section 3.3 that the list faces can be subdivided
into

∑

j ∂Dj+ ↑↓ where {Dj}j is the decomposition of Λl,s into oriented cubical
sets and ↑↓ contains each box x the same number of times as −x, where −x
represents the box x with opposite orientation. We will prove that Deg(faces) =
Deg(

∑

j ∂Dj) =
∑

j Deg(∂Dj). Together with equation (2) this implies

Deg(L) = s (−1)l+1
∑

j

Deg(∂Dj) = deg (f,Ω, 0).

One example of a possible faces construction is displayed in Figure 5.

Selected

Se
lec

ted

Non-selected

Not in ∂D

a
b

c

d

e

f

Fig. 5. In this case, B is an oriented cubical set containing two 3-dimensional boxes and
the Deg function input ∂B consists of twelve 2-dimensional boxes. Two of them are se-

lected and form an oriented cubical set D with oriented boundary ∂D = {a, b, c, d, e, f}.
The list faces contains two more boxes, identical with opposite orientation.

3.2 Pseudocode

Function Main
Input:

B: oriented n-box
I(f): algorithmic representation of an interval-computable Rn-valued function f

s.t. 0 /∈ f(∂B)
Output: the degree deg (f,B, 0)



boundary info ← refineCov(I(f), B)
return Deg(boundary info)

For an interval-computable function f (see Definition 6) and box a, if 0 6∈
I(f)(a), we can infer a non-zero sign vector entry (see Definition 8) for a. More-
over, due to interval-computability, if a is small enough and 0 /∈ f(a), then
0 /∈ I(f)(a). Hence, a function with the following specification can be easily
implemented by starting with the list of 2n faces of B, using I(f) to assign
sign vectors to them so that the constructed sign list is wrt. f , and recursively
splitting the boxes in the list until the interval evaluation I(f) computes the
necessary sign information for it to be sufficient.

Function refineCov
Input:

B: an n-box in Rn

I(f): algorithmic representation of an interval-computable Rn-valued function
s.t. 0 /∈ f(∂B)

Output:
Sufficient sign list wrt. f , covering the oriented boundary ∂B of B.

Now, finally, we can compute the degree from a sufficient sign covering.

Function Deg
Input: L: Sufficient sign list wrt. some function f , covering the oriented boundary ∂B of B.
Output: deg (f,B, 0)
if d = 0 then

return 1
2

∑

(a,sv)∈L orientation(a)× sv

else if L = {} then
return 0

else

let 1 ≤ l ≤ d+ 1 and s ∈ {+,−}
Lsel ← {(a, (sv1, . . . , svd+1)) ∈ L | svl = s}
Lnon ← L− Lsel

faces ← {}
for all a ∈ Lsel do

bound ← list of the oriented faces of a
split the boxes in bound until for all b ∈ bound, either
– b is a subset of some element of Lnon, or
– the intersection of b with any element of Lnon has dimension smaller than d− 1
for every b ∈ bound that is a subset of some box S in Lnon do

faces ← faces + (b, sv), where
sv is the sign vector of S with omitted l-th component

return s(−1)l+1 Deg(faces)



Note that the input/output specification of the function Deg describes the be-
havior for calls from the outside. Recursive calls of the function Deg might violate
the condition on the input—it might be a more complicated sign list. We will
discuss details on the structure of that list and correctness of recursive calls in
the following section.

3.3 Proof of Correctness

The algorithm first creates a sufficient sign list wrt. f : ∂B → Rn where B is
the input box. This sign list is then an input for the recursive function Deg. We
want to prove that if L is a sufficient sign list wrt. f covering the boundary ∂B
of a box B, then Deg(L) returns the degree deg(f,B, 0).

To prove this, we will analyze the Deg function body. When dealing with
d-dimensional sufficient sign lists, we always assume that some l ∈ {1, . . . , d+1}
and s ∈ {+,−} has been chosen. Let L be a sufficient sign list wrt. f . We denote
Lsel := {a ∈ L| (SVa)l = s} and Lnon := L − Lsel the sub-list of selected and
non-selected boxes. For each a ∈ Lsel, the Deg function refines the boundary ∂a
until each x ∈ ∂a is either a subset of some S ∈ Lnon or has at most (d − 2)-
dimensional intersection with each S ∈ Lnon. For each x ∈ ∂a that is a subset of
a S ∈ Lnon, it assigns to x the sign vector SVS with deleted l-th coordinate. We
denote the sub-list of all such x constructed from a by faces(a). The list faces
constructed in the Deg function body satisfies

faces =
∑

a∈Lsel

faces(a)

and s (−1)l+1 Deg(faces) is returned.
In this section, we will suppose that some implementation of the algorithm

is given. This includes a rule for the choices of l, s, subdivision of the boundary
faces of the selected boxes, order of the lists Lsel and Lnon and the choice of S.
We will show that if the sign list satisfies a certain regularity condition defined
in Definition 10, then the Deg function output is invariant with respect to some
changes of the input list, including any change of order, merging and splitting
some boxes or adding and deleting a pair of identical boxes with opposite orien-
tation. This is shown in Lemma 3. Further, we show that the list Lsel can
be decomposed into the sum of oriented cubical sets D1, . . . , Dm such that 0 /∈
⋃

i∈{1,...,m} f¬l(∂Dj) and such that the list faces constructed in the Deg function

body is a merging of
∑

j ∂Dj and a set of pairs {x,−x}, so that Deg(faces) =
Deg(

∑

j ∂Dj). In Theorem 2 we prove that Deg(
∑

j ∂Dj) =
∑

j Deg(∂Dj) and
combining this with equation (2) in Theorem 1, we show that if L is a sufficient
sign list wrt. f covering the boundary ∂B of a box B, then Deg(L) returns the
degree deg (f,B, 0).

Definition 9. Let L and L′ be two sufficient sign lists wrt. f . We say that L
is equivalent to L′ and write L ≃ L′, if L′ can be created from L by applying a
finite number of the following operations:



– Changing the order of the list,
– Replacing some oriented box a in one list by two boxes a1, a2 where a1, a2 is

the splitting of a into two oriented sub-boxes with equal sign vectors SVa =
SVa1

= SVa2
,

– Merging two oriented boxes a1, a2, that form a splitting of some box a and
have the same sign vector SVa1

= SVa2
, to one list element (a, SVa1

),
– Adding or deleting a pair of oriented boxes a and −a where −a is the box a

with opposite orientation (the sign vectors SVa and SV−a do not have to be
necessary equal in this case),

– Changing the sign vectors of some oriented boxes so that the sign covering
is still sufficient and wrt. f .

Clearly, ≃ is an equivalence relation on sign lists.

Definition 10. Let L be a d-dimensional sufficient sign list wrt. f . We say that
L is balanced, if each sub-face x of some a ∈ L such that for each b ∈ L, either
x ⊆ b, or x ∩ b is at most (d− 2)-dimensional 5, satisfies

|Sx| = |S−x|

where Sx is a sub-list of L containing all a s.t. x is an oriented sub-face of a.
In other words, x is a sub-face of some oriented box in L the same number

of times as −x.

A sign list representing the oriented boundary ∂B of an n-box B is clearly
balanced, because for each (n− 2)-dimensional sub-face x of some a ∈ ∂B that
is small enough to have either lower-dimensional or full intersection with each
b ∈ ∂B, x is an oriented sub-face of exactly one a ∈ ∂B and −x is an oriented
sub-face of exactly one a′ ∈ ∂B. The following Lemma says that the property
of being balanced is also preserved in the faces construction procedure. This
implies that all input lists L within the recursive Deg function are balanced.

Lemma 2. Let L be a sufficient sign list wrt. f that is balanced. Then the list
faces(L) created in the Deg function body is also balanced.

The proof of this is technical and we postpone it to the appendix.

Lemma 3. Let L be a balanced sufficient sign list wrt. f and L′ be equivalent
to L. Then Deg(L) = Deg(L′).

Proof. We prove this by induction on the dimension of the sign list. If L is a
0-dimensional sign list, then nontrivial merging and splitting of a box is im-
possible. Independence of order of the list follows from the formula Deg(L) =
1
2

∑

a∈L orientation(a)× SVa and adding a pair (x,−x) to the list will add to
the sum 1

2 (SVx − SV−x) =
1
2 (sign (f(x))− sign (f(x))) = 0.

Assume that the lemma holds up to dimension d−1. Let L′ be a permutation
(i.e. the same multiset with different order of elements) of a d-dimensional sign

5 Here x and b represent just the box, without taking care of the orientation.



list L and faces ′ be the list created for L′ in the Deg function body. Changing the
order of the list possibly changes the order of Lsel and Lnon. However, a ∈ Lsel

if and only if a ∈ (L′)sel and the same number of times. Further, faces(a) and
faces ′(a) can be constructed from each other by a finite number of splitting,
merging and sign vector changing operations, because both are sufficient sign
list wrt. f¬l representing a sign covering of the set

∪{x |x is a boundary sub−face of a and x ⊆ n for some n ∈ Lnon}.

So, faces ′ ≃ faces and DegL = s (−1)l+1 Deg faces = s (−1)l+1 Deg faces ′ =
Deg(L′).

Further, let L′ be created from L by splitting or merging some oriented box
and faces ′, resp. faces the list constructed in the Deg function body. If we split
or merge a non-selected box, then faces ′ will be equivalent to faces , because
the equivalence class of faces(a) depends only on the union of all non-selected
boxes. Splitting a selected box a into a1, a2 will result in splitting some elements
of faces(a), possibly changing their sign-vectors (depending on the choice of S
in the algorithm) compatibly with f¬l and generate a finite number of new pairs
e and −e s.t. e ∈ faces ′(a1) and −e ∈ faces ′(a2). So, faces is again equivalent to
faces ′ and we can apply the induction.

Assume that we change the sign vector of an element in L in such a way that
we still have a sufficient sign list wrt. f . If we change the sign vector of a box
such that we don’t change a selected box to a non-selected or vice versa, then
this change may only result in a possible change of sign vectors in faces wrt.
f¬l (and possibly splitting and merging of the boxes in faces , if the sign vector
change has an impact on the choice of S ∈ Lnon in the algorithm). So, in this
case, faces ≃ faces ′. Assume that we change the sign vector SVa so that some
a ∈ Lnon will become selected. Denote L to be the original sign list (a ∈ Lnon)

and L′ to be the new sign list in which a ∈ L′sel and let faces , resp. faces ′ be the
corresponding sign lists created in the Deg function body. First note that the
sublists of faces containing all elements that are not sub-faces of a and the sublist
of faces ′ containing all elements that are not sub-faces of a, are equivalent, so
we only have to analyze the changes caused by the changed sign-vector of a.
We claim that the sign list faces ′ is equivalent to faces + ∂a, where ∂a is a sign
list covering a boundary of a such that all x ∈ ∂a are endowed with the old
sign vectors SVa with l-th entry deleted. An implementation of the Deg function
body will create, in the faces ′(a) construction, a decomposition ∂a = asel∪anon,
where each oriented box in asel has at most (d−2)-dimensional intersection with
each b ∈ L′non and each oriented box in anon is a subset of some b ∈ L′non. It
follows that each x ∈ anon is contained in faces ′(a) and the list faces ′ contains
x one more time than faces . Further, due to the fact that L is balanced, for
each x ∈ asel, there exist the same number of boxes u in L s.t. x is an oriented
sub-face of u as boxes v s.t. −x is an oriented sub-face of v, a being among
the u’s. All such u and v’s are in L′sel, a being the only of these boxes contain
in Lnon. This implies that the list faces is equivalent to a list containing each
such −x one more time than x. After deleting a finite number of pairs (x,−x),



faces is equivalent to a list containing one −x for each x ∈ Lsel (it comes from
faces(v) for some v ∈ Lsel containing a sub-face of a ∈ Lnon). In faces ′, there
is no such −x, because x is not contained in any b ∈ L′non. Summarizing this,
faces ′ can be constructed from faces be adding a sign list covering |anon| and
deleting a sign list covering |asel|. This is equivalent to adding a sign list covering
all |∂a| and we obtain that faces ′ ≃ faces + ∂a. By induction, we may assume
that all boxes in ∂a has equal sign vector, compatible with f¬l. Now we need
to show that adding the full boundary ∂a of a endowed with a constant sign
vector does not change the Deg output. In the 0-dimensional case, this says that
Deg(L+ ∂a) = Deg(L)+ 1

2 (s− s) where s is the sign of f on a. Let L′ = L+ ∂a
be a sign list of positive dimension such that all elements in ∂a are endowed with
the same sign-vector. In the consequential faces construction, either all boundary
faces of a will be selected or they will be all non-selected. In the first case, faces ′

will be a sum of faces and pairs (x,−x). In the second case, ∂a may be refined so
that each element is either a subset of some other non-selected box, or has only
lower-dimensional intersection with each non-selected box. Those α ∈ ∂a that
are a subset of some other non-selected box can only possibly change the sign
vector of some boxes in faces . Boxes β ∈ ∂a that have only lower-dimensional
intersection with each non-selected box will lead (after possibly merging and
splitting the faces list) to the addition of a sum of pairs x and −x to faces due
to the fact that faces is a balanced sign list. So, faces ′ ≃ faces + ∂a ≃ faces and
Deg(L′) = Deg(L).

Finally, adding a pair of two selected boxes a and −a will create additional
pairs x and −x in faces . Adding a pair of two non-selected boxes a and −a may
enlarge the union of the non-selected boxes. Let L′ := L + a + (−a) for some
non-selected a. The faces ′ list created in the Deg function body is equivalent
(after merging and splitting some boxes) to a sum faces ′1 + faces ′2, where faces ′1
consists of all oriented sub-faces x of some a ∈ L′sel that are contained in some
b ∈ Lnon and faces ′2 consists of all oriented sub-faces x of some a ∈ L′sel that
are contained in a but have at most d − 2-dimensional intersection with each
b ∈ Lnon. We may further split the boxes in faces ′2 and suppose that for each
x ∈ faces ′2 and b ∈ L, either x ⊆ b or x ∩ b is at most d − 2-dimensional. Then
faces ≃ faces ′1 and due to the balancedness of L, each x ∈ faces ′2 is a sub-face
of some u ∈ L the same number of times as −x is a sub-face of some v ∈ L. All
these u and v’s have to be in Lsel, because x has a lower-dimensional intersection
with each b ∈ Lnon. So, the faces ′2 list is equivalent to a sum of pairs (x,−x) and
faces ′ ≃ faces ′1 + faces ′2 ≃ faces . If we add two boxes a and −a such that a is
selected and −a non-selected, we may change the sign vector of −a (due to the
previous paragraph) so that both a and −a are selected and the Deg function
output doesn’t change. �

Theorem 2. Let B be an n-box and I(f) be an algorithm representing an interval-
computable function f : B → Rn s.t. 0 /∈ f(∂B). The presented algorithm, run
with B and I(f) as inputs, terminates and returns the degree deg (f,B, 0).

Proof. The theorem is a consequence of statement 2 of the following:



1. Let Ω1, . . . Ωk be oriented cubical sets of dimension d+ 1, let L1, . . . , Lk be
d-dimensional sufficient sign lists wrt. to a function f : ∪|Ωi| → Rd+1 s.t.
the boxes in Li are d-boxes forming an oriented boundary ∂Ωi of Ωi for all
i. Then Deg(

∑

i Li) =
∑

i Deg(Li).
2. Let Ω be a (d + 1)-dimensional oriented cubical set and let L be a d-

dimensional sufficient sign list wrt. a function f : |Ω| → Rd+1, such that
the boxes in L form an oriented boundary of Ω. Then Deg(L) returns the
number deg (f,Ω, 0).

We prove both statements 1 and 2 by induction on the dimension d. If the
sign lists are 0-dimensional, then Deg(L) = 1

2

∑

a∈L orientation(a)×SVa where
SVa is the 1-dimensional sign vector of a ∈ L and Deg(

∑

i Li) =
∑

i Deg(Li)
is true for any sufficient 0-dimensional sign lists Li. For statement 2, the Deg
function result is compatible with the one-dimensional formula

deg (f,
−→
ab, 0) =

1

2
(sign f(b)− sign f(a))

for f :
−→
ab→ R.

Assume that the dimension is d > 0 and both 1 and 2 hold for lower-
dimensional sign lists. First we prove 2. Let L be a sufficient sign list such
that its oriented boxes form the boundary ∂Ω of a d + 1-dimensional oriented
cubical set Ω. We know that L is balanced. Let l ∈ {1, . . . , d+1} and s ∈ {+,−}
be chosen in the Deg function body. For each box a ∈ L, choose an index l(a)
s.t.

– if (SVa)l = s, then l(a) = l and s(a) = s
– if (SVa)l 6= s, then choose l(a) and s(a) so that the sign vector (SVa)l(a) =

s(a) 6= 0

Such index l(a) and sign s(a) exist for each a, because the sign list is sufficient.
For each l′ ∈ {1, . . . , d + 1} and s′ ∈ {+,−}, denote Λl′,s′ a list of all boxes
in a ∈ L such that l(a) = l′ and s(a) = s′. The list of selected boxes Lsel

is formed exactly by the boxes in Λl,s and the list of non-selected boxes is
Lnon := L−Lsel. It follows from Lemma 1 that the there exist (d−1)-dimensional
cubical sets Dj

l′,s′ such that ∪j Dj
l′,s′ = Λl′,s′ holds for all l

′ ∈ {1, . . . , d+1} and
s′ ∈ {+,−}. For each j and each a ∈ Dj

l,s, let faces(a) be the (d−1)-dimensional
sign list created from the sub-faces of a in the Deg function body, and let faces =
∑

a∈Lsel faces(a). Let faces(a)split be a splitting of faces(a) such that for each e ∈
faces(a)split and each b ∈ ∂Ω, either e ⊆ b or e∩b is at most (d−2)-dimensional.

Further, define ∂Dj
l,s to be the sub-list of

∑

a∈D
j

l,s

faces(a)split containing all x

such that there exists a unique a ∈ Dj
l,s s.t. x is a sub-face of a (we don’t take

care of orientation here). This is a sign list covering an oriented boundary of
Dj

l,s (see Def. 5).

Define facessplit :=
∑

a∈Lsel faces(a)split. Let x ∈ facessplit −
∑

j ∂Dj
l,s and

assume that x ∈ faces(S)split for S ∈ Dj
l,s. Because x /∈ ∂Dj

l,s, x is a sub-box of



exactly two boxes S and S′ in Dj
l,s and x ⊆ b for some non-selected box b. The

sub-list faces(S′)split contains a box y s.t. y ∩ x is (d − 1)-dimensional (y is a
sub-box of some face e of S′ and e ∩ b is (d − 1)-dimensional). The orientation
of y induced from S′ is different from the orientation of x (see Def. 4). So, after
possible further splitting of the list facessplit, we may assume that y = −x and
that for each j,

∑

a∈D
j

l,s

faces(a)split contains either both x and −x or none of

them. It follows that the list facessplit contains x the same number of times as

−x and the list faces is equivalent to
∑

j ∂D
j
l,s. Now we derive

Deg(L) = s (−1)l+1 Deg(faces) = (Lemma 3) = s (−1)l+1 Deg(
∑

j

∂Dj
l,s) =

(Induction, 1.) = s (−1)l+1
∑

j

Deg(∂Dj
l,s) = (Induction, 2.) =

= s (−1)l+1
∑

j

deg(f¬l, D
j
l,s, 0) = s (−1)l+1

∑

j; l′=l and s′=s

deg(f¬l, D
j
l′,s′ , 0) =

(Theorem 1, equation (2)) = deg (f,Ω, 0).

It remains to prove 1. Assume that statement 1 holds up to dimension d− 1,
and 2 holds up to dimension d. Let L =

∑

i Li, Li be a d-dimensional sufficient
sign lists wrt. f such that the boxes in Li form oriented boundaries ∂Ωi of
oriented cubical sets Ωi for i = 1, . . . , k.

In the same way as before, we define for i = 1, . . . , k the sets D(i)jl′,s′ to be

oriented cubical sets such that Li is the disjoint sum
∑

j,l′,s′ D(i)jl′,s′ , the sign

vectors have l′th component s′ on D(i)jl′,s′ and the oriented boundaries ∂D(i)jl,s
are sub-lists of a splitting of faces(L) such that each x ∈ ∂D(i)jl,s is a sub-face

of some b ∈ D(i)j
′

l′,s′ for some l′ 6= l. Similarly as before, faces is a equivalent to
∑

i,j ∂D(i)jl,s and

Deg(L) = s (−1)l+1 Deg(faces) = (Lemma 3) = s (−1)l+1 Deg(
∑

i,j

∂D(i)jl,s) =

(Induction, 1.) = s (−1)l+1
∑

i,j

Deg(∂D(i)jl,s) = (Induction, 2.)

= s (−1)l+1
∑

i,j

deg(f¬l, D(i)jl,s, 0) = s (−1)l+1
∑

i,j; l′=l and s′=s

deg(f¬l, D(i)jl′,s′ , 0) =

(Equation (2)) =
∑

i

deg (f,Ωi, 0) = (Statement 2.) =
∑

i

Deg(Li)

which completes the proof. �

From this proof it can be seen that our approach to degree computation is
not restricted to boxes, but works for general cubical sets: in Item 2 of this proof,
we showed that Deg(L) returns the degree deg(f,Ω, 0), if L is a d-dimensional
sufficient sign list wrt. a function f : |Ω| → Rd+1, such that the boxes in L form



an oriented boundary of Ω. So, for a function f defined on a (d+1)-dimensional
cubical set |Ω| embedded in Rn s.t. 0 /∈ f(∂|Ω|), we might algorithmically find
a subdivision of the oriented boundary ∂Ω, create a sufficient sign list L wrt. f
and run Deg(L).

4 Experimental Results

We tested a simple implementation of the algorithm on several algebraic func-
tions f and boxes B. All timings were measured running version 1.0 of the
implementation on a PC with Intel Core i3 2.13 GHz CPU and 4GB RAM.
Interval computations were done based on the library smath [18] implementing
intervals with floating point endpoints and conservative rounding. In theory it
could happen that 64 bit floating point representation does not suffice for com-
puting a sufficient sign covering of ∂B, but in our experiments we did not find
a single example where this happened.

Unfortunately, up to the best of our knowledge, all published articles on
general degree computation algorithms, only contain examples of low dimension,
for which our algorithm tends to terminate with a correct result in negligible
time. Hence, in order to show the properties and limitations of our algorithm,
we chose different examples that scale to higher dimensions.

The first part of the algorithm where boundary boxes are subdivided and sign
vectors are computed takes usually about 5-50 times less than the combinatorial
part where the degree is calculated from the list of boxes and sign vectors.
However, if there is no solution of f(x) = 0 on B (and the degree is zero), then
the second part terminates immediately, because —in the simplest case—there
are no ”selected boxes” at all.

In most cases, computation of deg (f,B, 0) such that 0 ∈ f(B) \ f(∂B), ter-
minated in reasonable time if dim B ≤ 10. If 0 /∈ f(B), then the degree is zero
and the algorithm terminates very fast even in much higher dimensions.

Example 1. For the identity function on [−1, 1]n, the degree computation termi-
nates even in high dimensions. The times are given in Figure 6.

Example 2. We considered the function

f1 = x2
1 − x2

2 − . . .− x2
n

f2 = 2x1x2

. . .

fn = 2x1xn.

This function has a single root in x = 0 of degree 2 for n even and 0 for n odd.
Figure 7 shows the time consumed for calculating deg (f,B, 0) for B = [−1, 1]n
and B = [−0.001, 1]n. The computation is significantly faster for B = [−ǫ, 1]n
where ǫ > 0 is small and the root 0 is close to the boundary. In this case, the
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Fig. 6. Time spent on calculating deg (id, [−1, 1]n, 0) = 1.

subdivision of the boundary contains only two selected boxes (both close to 0).
For B = [−ǫ, ǫ]n, the calculation takes about the same time as for B = [−1, 1]n.
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Fig. 7. Time needed to calculate the degree deg (f, [−1, 1]n, 0) and deg (f, [−ǫ, 1]n, 0)
for ǫ = 0.001.

The following table shows the number of selected and non-selected boxes in
the subdivision of ∂B for B = [−1, 1]n.

Dim B Selected boxes Non-selected boxes
5 32 800
6 64 2368
7 128 6528
8 256 17408
9 512 44032
10 1024 108544



If we chose the box to be [ǫ, 1]n or any other such that 0 /∈ f(B), the degree
calculation terminates almost immediately even in dimension 1000 and more.
We also investigated the effect of the choice of l and s in the Deg function body.
By default, they are chosen so that the number of selected boxes is minimal.
Numerical experiments show that the computation takes more time if the num-
ber of selected boxes is larger. The following table shows the number of selected
boxes for various l and s in dimension 6.

l s Nr. of boxes l s Nr. of boxes
1 + 64 1 - 1600
2 + 64 2 - 64
3 + 64 3 - 64
4 + 64 4 - 64
5 + 96 5 - 96
6 + 96 6 - 96

Choosing the bad strategy choice l = 1 and s = − would increase the computa-
tion time significantly. The following table shows the time comparison.

Dimension Optimal choice of l and s Worst choice of l and s
6 0.09 s 0.8 s
7 0.65 s 10 s
8 5.6 s 175 s

In general, we made the observation that for a fixed choice of l and s, for some
permutations of variables the number of selected boxes, and hence run-time, is
much higher than for others. Hence, our strategy of choosing l and s makes the
run-time of the algorithm much more robust.

Example 3. We also tested the algorithm on the non-Lipschitz function

3

√

f := ( 3

√

f1,
3

√

f2, . . . ,
3

√

fn) : [−1, 1]n → Rn

where (f1, . . . , fn) is the function from Example 2. The construction of the sign
covering of the boundary takes more time than in the previous example, be-
cause more interval computations are involved. However, the sign covering of
the boundary is identical to that in Example 2, because for all intervals [a, b]
that occur in this computation, [a, b] doesn’t contain 0 if and only if our im-
plementation of I( 3

√

)([a, b]) doesn’t contain 0 and both intervals have the same
sign. So, the combinatorial part is identical to the previous example. We com-
pare the running time of the numerical part of the computation for f and 3

√
f

in the following table 6.

6 Our implementation of I( 3
√

) is based on the real number identity 3
√
x =

sign (x) exp( 1
3
ln |x|). For the absolute value, logarithm and exponentiation we used

the interval functions available in the smath library [18].



Dimension Sign covering wrt. f Sign covering wrt. 3
√
f

8 0.2 s 5.1 s
9 1 s 15.4 s
10 5.3 s 49.5 s

A Proof of Lemma 1

Let us adopt the notation a →֒ B for “a is an oriented sub-face of B” (see Def.
3). Let ∂Ω be an oriented boundary of the oriented d-dimensional cubical set Ω
and let Λl′,s′ = {a ∈ ∂Ω | (SVa)l′ = s′}. ∂Ω is a disjoint union of the sets Λl′,s′ ,
(l′, s′) ∈ {1, . . . , d} × {+,−}.

For each B ∈ Ω, let ∂B be an oriented boundary of {B} that contains all
a ∈ ∂Ω such that a →֒ B. Such oriented boundary ∂B can be constructed by
completing {a ∈ ∂Ω | a →֒ B} to a full oriented boundary of B. Further, for each
a ∈ ∂Ω, let ∂a be an oriented boundary of {a} such that for each x ∈ ∂a, the
following condition is satisfied:

– for each B ∈ Ω and each b ∈ ∂B, either x ⊆ b or x ∩ b is at most (d − 3)-
dimensional.

Such oriented boundary ∂a can be constructed by splitting the boundary faces
of a as long as some boundary face x ∈ ∂a has nontrivial (d − 2)-dimensional
intersection with some b ∈ ∂B for some B ∈ Ω. Denote by ∂Λl,s the set of all
boxes x ∈ ∂a s.t. a ∈ Λl,s and x is a sub-face (not necessary oriented sub-face)
of some b ∈ Λl′,s′ for (l′, s′) 6= (l, s). Finally, for any oriented box a, let −a be
the same box with opposite orientation.

For all a ∈ ∂Ω, x ∈ ∂a and B ∈ Ω, either x ⊆ B (this is when x ⊆ b for
some b ∈ ∂B) or x∩B is at most (d− 3)-dimensional. If x ⊆ b ∈ ∂B, then there
exist unique b1, b2 ∈ ∂B such that x →֒ b1 and −x →֒ b2 (∂B is an oriented
cubical set with empty boundary). Further, note that for each b ∈ ∂B, either
b ∈ ∂Ω or b has only lower-dimensional intersection with each element of ∂Ω (if
b had a (d − 1)-dimensional intersection with c ∈ ∂Ω and b 6= c, then c would
be a sub-face of B due to the second condition of Def. 5 and b, c ∈ ∂B would
violate the first condition of Def. 5).

Let l ∈ {1, . . . , d} and s ∈ {+,−}. We construct the sets Dj and ∂Dj induc-
tively by associating the boxes in Λl,s with sets Dj . Assume that D1, ∂D1, . . . ,
Dk−1, ∂Dk−1 satisfy the following conditions for all 1 ≤ i, j ≤ k − 1:

– Di ⊆ Λl,s is an oriented cubical set
– Di ∩Dj = ∅ for i 6= j
– ∂Dj ⊆ ∂Λl,s is an oriented boundary of Dj .

Let Dk ⊆ Λl,s be an oriented cubical set such that Dk ∩ Di = ∅ for i < k.
Let ∂Dk be an oriented boundary of Dk s.t. ∂Dk ⊆ ∪a∈Dk

∂a (such a boundary
exists, because ∂a is subdivided fine enough). If ∂Dk ⊆ ∂Λl,s, then condition
4. from the Lemma is satisfied for each b ∈ ∂Dk and the construction of Dk is



completed. In such case, if ∪ki=1Di 6= Λl,s, then we choose some a ∈ Λl,s \∪ki=1Di

and defining a ∈ Dk+1 we start the construction of a new set Dk+1.
Assume that ∂Dk * ∂Λl,s. Then there exists some x ∈ ∂Dk, x /∈ ∂Λl,s.

Because x ∈ ∂Dk, there exists exactly one a0 ∈ Dk such that x →֒ a0 (Def. 5).
The condition x /∈ ∂Λl,s implies that the intersection of x with any b ∈ Λl′,s′ for
(l′, s′) 6= (l, s) has dimension at most d− 3. We assumed that a0 ∈ ∂Ω, so there
exists a unique box B1 ∈ Ω such that a0 →֒ B1. Let us construct a sequence
a0, a1, . . . , ap and a sequence B1, . . . , Bp ∈ Ω of oriented boxes such that the
following conditions are satisfied for u = 1, . . . , p:

– x →֒ au−1 →֒ Bu and au−1 ∈ ∂Bu,
– (−x) →֒ (−au) →֒ Bu and (−au) ∈ ∂Bu,
– Bu and Bu+1 have (d − 1)-dimensional intersection with compatible orien-

tations,
– (−ap) ∈ ∂Ω.

The boxes B1 and a0 have been defined and x →֒ a0 →֒ B1. Suppose that x →֒
au−1 →֒ Bu. Let (−au) be the unique oriented box in ∂Bu s.t. (−x) →֒ (−au). If
(−au) ∈ ∂Ω, then u = p and we are done. Otherwise, the intersection of (−au)
with each b ∈ ∂Ω is at most d − 2 dimensional and it follows from Definitions
4 and 5 that (−au) is a common sub-face of two boxes Bu and Bu+1 in Ω with
compatible orientations. This means that (−au) →֒ Bu and au →֒ Bu+1, so
x →֒ au →֒ Bu+1. For all u, x →֒ au, in particular −x →֒ (−ap) and it follows
that a0 and (−ap) have compatible orientations. We add the box (−ap) to Dk.
We will show that this does not violate any of the above assumptions and we
redefine ∂Dk so that it is an oriented boundary of Dk and ∂Dk ⊆ ∪a∈Dk

∂a.
First we show that the sequence {(au, Bu)}u terminates, i.e. it is not periodic.

Assume that it is periodic and that (−au) /∈ ∂Ω for all u > 0. Let p be the
smallest integer such that (ap, Bp) = (ak, Bk) for some k < p. There exists
a unique ap−1 s.t. x →֒ ap−1 →֒ Bp and exactly two boxes Bp−1 and Bp in
Ω containing ap−1 as a sub-face, so (ap−1, Bp−1) is uniquely determined by
(ap, Bp). If k > 1, then this implies (ak−1, Bk−1) = (ap−1, Bp−1), contradicting
the assumption that p was the smallest such integer. If k = 1, then x →֒ a0 =
ap−1 →֒ B1 = Bp and a0 is a common sub-face of two elements Bp and Bp−1 ∈ Ω
which contradicts a0 ∈ ∂Ω. We showed that the sequence {(au, Bu)}u terminates
and we may add (−ap) to Dk.

Now we show that adding (−ap) to Dk doesn’t violate any assumption of the
construction of the sets Dj . Note that ap 6= a0. If ap = a0, then we would have
x →֒ a0 →֒ B1 ∈ Ω and −a0 →֒ Bp ∈ Ω. This implies that B1 6= Bp, a0 →֒ B1,
(−a0) →֒ Bp, which contradicts and the assumption a0 ∈ ∂Ω (Def. 5). Further,
if (−ap) /∈ Λl,s then (−ap) ∈ Λl′,s′ for some (l′, s′) 6= (l, s) and x would be a
(d − 2)-dimensional sub-face of (−ap), contradicting the assumption x /∈ ∂Λl,s.
This proves that (−ap) ∈ Λl,s. The box −ap is not in Dk yet, because x is
contained in both −ap and a0 and we assumed that x ∈ ∂Dk. Also, (−ap) is not
contained in any Di, i < k. If (−ap) ∈ Di for i < k, then a0 would be added
to Di before, constructing the sequence (−ap), (−ap−1), . . . , (−a1), (−a0) where
(−x) →֒ (−av) →֒ Bv and x →֒ av−1 →֒ Bv for all v = p, . . . , 2, 1. At the end of



this sequence, a0 = −(−a0) ∈ ∂Ω would be included into Di, contradicting our
starting assumption Di ∩ Dk = ∅. So, adding (−ap) to Dk doesn’t violate any
assumption of the construction.

Each x ∈ ∂Dj is a sub-box of some b ∈ Λl′,s′ for (l
′, s′) 6= (l, s). However, the

case (l′, s′) = (l,−s) is impossible, because fl cannot have sign s on |Dj | and −s
on x ⊆ |Dj |. So, l′ 6= l. In this way, we construct the oriented cubical sets Dj

such that ∪Dj = Λl,s. This can be done for each l and s and the resulting sets
{Dj}j satisfy all the requirements. �

B Proof of Lemma 2

Assume that L is a balanced d-dimensional sufficient sign list wrt. f . First we
define some additional notation. We say that an oriented (d− 1)-box e is small
wrt. L, if for each F ∈ L, either e ⊆ F or e ∩ F is at most (d− 2)-dimensional,
where e and F represent the boxes, without considering the orientation. Fur-
thermore, we fix the notation a →֒ B for “a is an oriented sub-face of B” (with
the induced orientation, see Def. 3) as in the proof of Lemma 1, and the notation
a ⊆o b for “a is an oriented sub-box of b” (Def. 2). Further, let us represent the
list L as a set of pairs L ≃ {(E1, 1), (E2, 2), . . . , (E|L|, |L|)}, where Ei is the i-th
element of L.

Let

A = ({e | ∃(E, i) ∈ L e →֒ E and e is small wrt. L},⊆o)

be a partially ordered set. If L 6= ∅ then A 6= ∅, because each oriented sub-
face e of E ∈ L can be refined to small oriented sub-boxes wrt. L. Let M be
the set of maximal elements in A. These are exactly the elements that are an
intersection of a face ∂ of some E ∈ L with a maximal number of boxes in L s.t.
the intersection is still (d−1)-dimensional. It follows thatM is finite. Moreover,
each e ∈ A is an oriented sub-box of a unique element e′ in M. We define the
equivalence class [e] of some e ∈ A to be the set {g ∈ A | g ⊆o e′} for the unique
e′ ∈M. For e ∈ A, let Se be the subset of L containing all (E, i) ∈ L such that
e →֒ E. If e ⊆o e′ ∈ M, then Se = Se′ , so we may define the set S[e] for the
equivalence class [e]. The balance property says that for each e ∈ A, we have
|S[e]| = |S[−e]|. For each e ∈M, define the bijection P[e] : S[e] → S[−e] in such a

way that P[−e] = P−1
[e] for all e ∈ A.

Let l ∈ {1, . . . , d + 1} and s ∈ {+,−}, Lsel be the subset of L containing
all (E, i) s.t. (SVE)l = s, let L − Lsel be the set of non-selected boxes and
assume that faces =

∑

E∈Lsel faces(E) was created in the Deg function body.
We will represent faces as a set of elements (e, (E, i)) such that e ∈ faces((E, i))
was created as an oriented sub-face of (E, i) ∈ Lsel in the Deg function body.
Note that for a particular (E, i) ∈ L, e →֒ E cannot be contained more than
once in the list faces((E, i)), so faces(E, i) contains each of its element exactly
once, and hence each (e, (E, i)) represents a unique element of the faces list.
In this set representation of faces , we ignore the order of the list. Note that the



balancedness of faces , that we want to prove, does not depend on the order of
faces .

Let (e, (E, i)) ∈ faces and x →֒ e be so that e is small wrt. faces (this
means that for each (g, (E, i)) ∈ faces , either x ⊆ g or x ∩ g is at most (d− 3)-
dimensional). Let Tx be the subset of faces containing all (g, (E, i)) ∈ faces s.t.
x →֒ g. We want to show that |Tx| = |T−x|. Let x′ ⊆o x be so small that for
each (E, i) ∈ L, either x ⊆ E or x ∩ E is at most (d − 3)-dimensional (such
a sub-box exists, because it may be constructed as an intersection of x with a
finite number of boxes from L). Tx = Ty holds for any oriented sub-box y of
x, so it is sufficient to show |Tx′ | = |T−x′ |. To prove this, we will construct a
bijection Rx : Tx′ → T−x′ .

Let (e0, (E0, i0)) ∈ Tx. This means that e0 ∈ faces((E0, i0)) for some (E0, i0) ∈
Lsel and x →֒ e0. Let e1 be another sub-face of E0 s.t. x′ ⊆ e0 ∩ e1 and e1 is
small wrt. L (such e1 exists because of the condition that x′ is small wrt. L). The
sub-faces e0 and e1 of E0 are oriented compatibly, so (−x′) →֒ e1 and e1 ∈ A.
E0 has up to equivalence only two sub-faces e0, e1 ∈ A containing x′ so [e1] is
uniquely determined by x and (e0, (E0, i0)). If there exists some (F, j) ∈ Lnon

s.t. e1 ⊆ F , then e1 ⊆o e′1 →֒ E0 for some e′1 such that (e′1, (E0, i0)) ∈ faces and
(e′1, (E0, i0)) ∈ T−x. In that case, we define Rx((e0, (E0, i0))) := (e′1, (E0, i0)).
Otherwise, e1 is not a subset of any non-selected box, and for each (F, i) ∈ L,
e1 →֒ F implies (F, i) ∈ Lsel. Let (E1, i1) := P[e1]((E0, i0)). We know that

(E1, i1) ∈ Lsel and x′ →֒ −e1 →֒ E1. We again find a box e2 in E1 such that
the intersection e1 ∩ e2 contains x′ and (−e1) and e2 are oriented compatibly, so
−x′ →֒ e2 →֒ E1. In this way, we construct a sequence of boxes ej and elements
(Ej , ij) such that −x′ →֒ ej+1 →֒ Ej for j ≥ 0, −ej →֒ Ej for j ≥ 1, all ej are
small wrt. L, P[ej ]((Ej−1, ij−1)) = (Ej , ij) and ej is not a subset of any non-
selected box for j = 1, . . . , p. If ep+1 is a subset of some non-selected box, then
ep ⊆ e′p+1 ∈ faces((Ep, ip)) and we define Rx((e0, (E0, i0)) := (e′p+1, (Ep, ip)).

It remains to prove that Rx is correctly defined, i.e. that for some finite p ∈ N,
ep+1 will be a subset of some non-selected box, and that Rx is a bijection. First
we show that this procedure terminates. Assume, for contradiction, that the se-
quence {[ej ], (Ej , ij)}j is infinite. Because there exists only a finite number of
(Ej , ij) ∈ L and only a finite number of [ej ], the sequence is periodic. Let k
be the minimal index such that ([ek], (Ek, ik)) = ([el], (El, il)) for some l < k.
If l > 0, then (El, el) = P[el]((El−1, il−1)) and (El−1, il−1) = P[−el]((El, il))

due to the assumption P[el] = P−1
[−el]

. It follows that El−1 is uniquely deter-

mined by ([el], (El, il)) and (El−1, il−1) = (Ek−1, ik−1). From the construction,
we know that −x′ →֒ el →֒ El−1. However, in El−1, there exists up to equiv-
alence a unique −el−1 →֒ El−1 s.t. x′ →֒ (−el−1) →֒ El−1. So, we proved that
([el−1], (El−1, il−1)) = ([ek−1], (Ek−1, ik−1)), contradicting the assumption that
k was the minimal index with such equality. If l = 0 and [ek] = [e0], then the
fact that e0 is a subset of some non-selected box contradicts the assumption that
for each i > 0, ei is not a subset of any non-selected box.

Finally, note that ifRx(e0, (E0, i0)) = (ep+1, (Ep, ip), thenR−x(ep+1, (Ep, ip) =
(e0, (E0, i0)), because each ([ej ], (Ej , ij)) is uniquely determined by [ej+1] and



(Ej+1, ij+1). So, starting with (ep+1, (Ep, ip)) will just reverse the order and we
will eventually come to some ẽ0 s.t. ẽ0 is a sub-face of (E0, i0), ẽ0 is small wrt.
faces and ẽ0 is a subset of some non-selected box. It follows that ẽ0 is an oriented
sub-box of the unique (e0, (E0, i0)) ∈ faces . This proves that R−x = R−1

x and
that R is a bijection. �
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