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Abstract. An adhesive unilateral contact between visco-elastic bodies at small strains and in a
Kelvin-Voigt rheology is scrutinized, neglecting inertia. The flow-rule for debonding the adhe-
sive is considered rate independent, unidirectional, and non-associative due to dependence on the
mixity of modes of delamination, namely Mode I (opening) needs (=dissipates) less energy than
Mode II (shearing). Such mode-mixity dependence of delamination is a very pronounced (and
experimentally confirmed) phenomenon typically considered in engineering models. An efficient
semi-implicit-in-time FEM discretization leading to recursive quadratic mathematical programs is
devised. Its convergence and thus the existence of weak solutions is proved. Computational exper-
iments implemented by BEM illustrate the modeling aspects and the numerical efficiency of the
discretization.
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1 Introduction

In this article, we focus on adhesive contacts, which is a part of nonlinear contact mechanics
with numerous practical applications. In particular, we focus on the modeling, analysis, and
computations of an inelastic process called delamination (or debonding) of elastic bodies
glued together along a prescribed delamination interfaces. On a microscopic level, some
macromolecules of the adhesive may break upon loading and we assume that they can never
be glued back, i.e., no “healing” is possible. This makes the process unidirectional and
irreversible. On the glued interface, we consider the delamination process as rate-independent
and, in the bulk, we also take into account rate-dependent viscous effects. An important
feature appearing in engineering modeling (and so far mostly omitted in the mathematical
literature), is the dependence of this process on the modes under which it proceeds. Indeed,
Mode I (=opening) usually dissipates much less energy than Mode II (=shearing). The
difference may be up to hundreds of percents, cf. [1, 14, 15, 35]. Moreover, the delamination
process seldom occurs in such pure modes and, in reality, the mixed mode appears more
frequently. The substantial difference in the dissipation in various modes is explained either
by some roughness of the glued interface (to be overcome in Mode II but not in Mode I,
cf. [6]) or by some plastification caused by shear in Mode II (but not by mere tension in
Mode I) before the delamination itself happens, cf. [14, 42].

In this article, we focus on a standard engineering model which was rigorously analyzed al-
ready in [24] even in a full thermodynamical context but exploiting the concept of non-simple
materials (see e.g. [40]) which whould be much more demanding to be implemented compu-
tationally. Although computational simulations are routinely performed in engineering and
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successfully used in applications even in simple materials, where the strain energy depends
only of the first gradient of the deformation, cf. e.g. [1, 3, 10, 36, 37] and references therein,
the rigorous convergence/existence analysis is not at disposal. Such computations and the
models themselves are thus completely unjustified. Here we concentrate on an isothermal
situation in simple visco-elastic materials, and emphasize numerical aspects including the
efficient computational feasibility of the model with a guaranteed numerical stability and
convergence.

Let us just highlight main ingredients of the model formulated in detail in Section 2, in
particular focusing on the mixity of delamination modes. We confine ourselves to quasistatic
problems (i.e. intertial neglected) at small strains and, just for the sake of notational sim-
plicity, we restrict the analysis to the case of two (instead of several) visco-elastic bodies Ω+

and Ω− glued together along the contact interface ΓC. We assume an elastic response of the
adhesive, and then one speaks about adhesive contact. The elastic response in the adhesive is
assumed linear, being determined by the (positive-definite) matrix of elastic moduli A, and
the adhesive layer itself is assumed infinitesimally thin. At a current time instant, the “vol-
ume fraction” of debonded molecular links will be “macroscopically” described by the scalar
delamination parameter z : ΓC → [0, 1], which can be referred to the modeling approach by
M.Frémond, see [8, 9]. The state z(x) = 1 means that the adhesive at x ∈ ΓC is still 100%
undestroyed and thus fully effective, while the intermediate state 0 < z(x) < 1 means that
the fraction 1− z(x) of molecular links have already been broken but the remaining portion
z(x) is still effective, and eventually z(x) = 0 means that the interface is already completely
debonded at x ∈ ΓC. As already used e.g. in [11], in some simplification, it is assumed that
a specific phenomenologically prescribed energy a (in J/m2, in 3-dimensional situations) is
needed to break the macromolecular structure of the adhesive, independently of the rate of
this process. Thus, delamination is a rate-independent and activated phenomenon, ruled by
the maximum dissipation principle, and we shall therefore consider a rate-independent flow
rule for z. We will consider the whole energy spent for the delamination as dissipated; for a
more general model cf. Remark 2.1 below.

Let us now emphasize main new features of the model, i.e. its mixity-sensitivity. A
standard engineering approach as e.g. in [10,36,37] is to make the activation energy a = a(ψG)
depend on the so-called mode-mixity angle ψG. For instance, if ~nC

= (0, 0, 1) at some x ∈ ΓC

(with ~n
C
the unit normal to ΓC, oriented from Ω+ to Ω−), and A = diag(κn, κt, κt), the mode-

mixity angle is defined as ψG = ψG([[u]]) := arc tan(k1/2|[[u]]t|/|[[u]]n|) with k = κt/κn where
[[u]]t and [[u]]n stand for the tangential and the normal traction; i.e. the jump of displacement
across the boundary ΓC decomposes as [[u]] = [[u]]n~nC

+ [[u]]t, with [[u]]n = [[u]] · ~n
C
. In fact, to

avoid discontinuity of such formula at 0, rather a suitable regularization of this mode-mixity
angle should be taken, e.g.

ψG(
[[
u
]]
) = arc tan

√
κt|[[u]]t|2

κn|[[u]]n|2 + ǫ
with a small ǫ > 0. (1.1)

The coefficient κt is often smaller than κn, and a typical phenomenological form of a used
in engineering [10] is, e.g.,

a(ψG) := aI
(
1 + tan2((1−λ)ψG)

)
; (1.2)

cf. also [1] for a similar formula. In (1.2), aI = a(0) is the activation threshold for the
delamination mode I and λ is the so-called delamination-mode-sensitivity parameter. Note
that a moderately strong delamination-mode sensitivity occurs when the ratio aII/aI is about
5-10 where aII = a(90◦) is the activation threshold for the pure delamination mode II. Then,
one has λ about 0.2-0.3; cf. [37].

Mathematical troubles arising in the analysis of the system of partial differential inequal-
ities for mixity-sensitive delamination model are caused by an inelastic rate-independent
process on the boundary ΓC along which delamination performs. Mixity-dependence of the
dissipation makes the model non-associative, in contrast to the mixity-insensitive case and
to another model involving a interfacial plasticity as an additional internal variable, recently
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devised and analyzed in an isothermal case in [29, 30, 32]. In this work, quadratic viscos-
ity dissipation energy coupled with a stored energy density, asymptotically growing faster
than the spatial dimension and exhibiting separate convexity in strain and the delamination
variable allow us to prove the existence of a suitable weak solution. The viscosity has thus
less growth than the stored energy, which, unfortunately, does not seem to allow for the
mechanical energy conservation, cf. Remark 4.1 below.

The plan of the paper is as follows: in Section 2 we formulate the initial-boundary-value
problem in its classical formulation, following essentially [23, 24]. After a suitable weak
formulation based on the concept of local solutions due to [17, 41], in Sec. 3 we device a
semi-implicit discretization in time combined with a finite-element discretization in space
and prove its numerical stability, i.e. suitable a-priori estimates. The efficient numerical
implementation (based on recursive quadratic programming combined with elimination of
bulk nodes by a boundary-element method) as well as illustrative 2-dimensional computa-
tional simulations are performed in Sec. 4. Eventually, the convergence of the approximate
solutions towards weak solutions is outlined in Sect. 5 by using the already derived a-priori
estimates. In particular, we prove unconditional convergence of discrete solutions to a weak
solution to the model whenever the mesh size and the time step tend to zero.

Let us emphasize that, to our best knowledge, this article represents a first attempt to
pose the standard engineering model for the mixity-sensitive delamination of simple materials
(together with a physically relevant concept of its solution) and to devise an efficiently
implementable algorithm in a way which simultaneously allows for a rigorous mathematical
support as far as numerical stability and guaranteed convergence.

2 The model in its classical formulation

Hereafter, we suppose that the visco-elastic/inelatic-adhesive structure occupies a bounded
Lipschitz domain Ω ⊂ Rd composed from (for notational simplicity only) two visco-elastic
bodies, denoted by Ω+ and Ω−, glued together on a common conctact boundary, denoted by
ΓC, which represents a prescribed interface where delamination may occur. This means we
consider

Ω = Ω+ ∪ ΓC ∪ Ω− ,

with Ω+ and Ω− disjoint Lipschitz subdomains. We denote by ~n the outward unit normal to
∂Ω, and by ~n

C
the unit normal to ΓC, which we consider oriented from Ω+ to Ω−. Moreover,

given v defined on Ω\ΓC, v
+ (respectively, v−) signifies the restriction of v to Ω+ (to Ω−,

resp.). We further suppose that the boundary of Ω splits as

∂Ω = ΓD ∪ ΓN ,

with ΓD and ΓN open subsets in the relative topology of ∂Ω, disjoint one from each other and
each of them with a smooth (one-dimensional) boundary. Considering T > 0 a fixed time
horizon, we set

Q := (0, T )×Ω, Σ := (0, T )×∂Ω, ΣC := (0, T )×ΓC, ΣD := (0, T )×ΓD, ΣN := (0, T )×ΓN.

For readers’ convenience, let us summarize the basic notation used in what follows:

d = 2, 3 dimension of the problem,
u : Ω\ΓC → R

d displacement,
z : ΓC → [0, 1] delamination variable,
e = e(u) = 1

2∇u⊤+ 1
2∇u small-strain tensor,

[[u]] = u+|ΓC − u−|ΓC jump of u across ΓC,
σ stress tensor,
ψG mode-mixity angle,

C : Rd×d
sym → R

d×d
sym nonlinear elastic Hook law,

D ∈ R
d4 viscosity constants,

A ∈ R
d×d elastic coefficients of the adhesive,

α = α([[u]]) energy (per area) dissipated on ΓC,
F : Q→ R

d applied bulk force,
wD prescribed boundary displacement,
f : ΣN → R

d applied traction.

Table 1. Summary of the basic notation used thorough the paper.
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The state is formed by the couple (u, z). We use Kelvin-Voigt’s rheology and, rather for math-
ematical reasons to facilitate analysis in multidimensional cases, a (possibly only slightly)
nonlinear static response. Hence we assume the stress σ : (0, T )× Ω → Rd×d in the form:

σ = σ(u,
.
u) := De(

.
u)︸ ︷︷ ︸

viscous
stress

+ C(e(u))︸ ︷︷ ︸
elastic
stress

, (2.1)

Furthermore, we shall denote by T = T (u, v) the traction stress on some two-dimensional
surface Γ (later, we shall take either Γ = ΓC or Γ = ΓN), i.e.

T (u,
.
u) := σ(u,

.
u)
∣∣
Γ
~n , (2.2)

where of course we take as ~n the unit normal ~n
C
to ΓC, if Γ = ΓC. Its normal and tangential

components are defined on ΓC ∪ ΓN respectively by the formulas

Tn(u,
.
u) = ~n · σ(u, .u)

∣∣
Γ
~n and Tt(u,

.
u) = T (u,

.
u)− Tn(u,

.
u)~n. (2.3)

We address the standard frictionless Signorini conditions on ΓC for the displacement u.

Classical formulation of the adhesive contact problem. Beside the force equilib-
rium coupled with the heat equation inside Q\ΣC and supplemented with standard bound-
ary conditions, we have two complementarity problems on ΣC. Altogether, we have the
boundary-value problem

div
(
De(
.
u) + C(e(u))

)
+ F = 0, in Q\ΣC, (2.4a)

u = 0 on ΣD, (2.4b)

T (u,
.
u) = f on ΣN, (2.4c)

[[
De(
.
u) + C(e(u))

]]
~n

C
= 0 on ΣC, (2.4d)

Tt(u,
.
u) + z

(
Au−

(
(Au)·~n

C

)
~n

C

)
= 0 on ΣC, (2.4e)

[[
u
]]
·~n

C
≥ 0 and Tn(u,

.
u) + z(A

[[
u
]]
)·~n

C
≥ 0 on ΣC, (2.4f)

(
Tn(u,

.
u)+z(A

[[
u
]]
)~n

C

)
(
[[
u
]]
·~n

C
) = 0 on ΣC, (2.4g)

.
z ≤ 0 and d ≤ α(

[[
u
]]
) and

.
z
(
d− α(

[[
u
]]
)
)
= 0 on ΣC, (2.4h)

d ∈ ∂I[0,1](z) +
1
2
A
[[
u
]]
·
[[
u
]]

on ΣC. (2.4i)

As to the involved symbols, we assume that

ϕ : Rd×d
sym → R convex smooth; ∃ ε0, ε1 > 0, p > d : ε1(1 + |e|p) ≥ ϕ(e) ≥ ε0(|e|p− 1), (2.5a)

C(e) := ϕ′(e) :=
∂ϕ(e)

∂e
elastic stress tensor at strain e, (2.5b)

D : Rd×d
sym → R

d×d
sym linear positive definite, (2.5c)

A : Rd → R
d linear positive semidefinite. (2.5d)

The complementarity problem (2.4f)–(2.4g) describes the Signorini unilateral contact.
The complementarity problem (2.4h)–(2.4i) corresponds to the flow rule governing the evo-
lution of z:

∂I(−∞,0](
.
z) + ∂I[0,1](z) +

1
2
A
[[
u
]]
·
[[
u
]]
∋ α(

[[
u
]]
) in ΣC, (2.6)

with the indicator functions I(−∞,0], I[0,1] : R → [0,+∞] and their (convex analysis) subdif-
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ferentials ∂I(−∞,0], ∂I[0,1] : R ⇉ R. The energetics of the model is formally:

d

dt

( ∫

Ω\ΓC

ϕ(e(u)) dx

︸ ︷︷ ︸
elastic energy
in the bulk

+

∫

ΓC

z

2
A
[[
u
]]
·
[[
u
]]
dS

︸ ︷︷ ︸
elastic energy
in the adhesive

)
+

∫

Ω\ΓC

1

2
De(
.
u):e(

.
u) dx

︸ ︷︷ ︸
rate of viscous

dissipation in the bulk

+

∫

ΓC

α(
[[
u
]]
)
.
z dS

︸ ︷︷ ︸
rate of dissipation by dela-
mination of the adhesive

=

∫

Ω

F ·.u dx
︸ ︷︷ ︸

power of bulk
mechanical load

+

∫

ΓN

f ·.u dS
︸ ︷︷ ︸

power of surface
mechanical load

. (2.7)

For more details about derivation of the model we refer to [23, 24]. We will consider the
initial-value problem for (2.4) by prescribing the initial condition

u(0) = u0 a.e. in Ω, z(0) = z0 a.e. in ΓC. (2.8)

Remark 2.1 (Stored energy increased by delamination). The energy needed for the delam-
ination can be alternatively understood as contributing to the stored energy. This reflects
the fact that any new surface represents some additional stored energy. In the isothermal
unidirectional delamination, this alternative concept is mechanically equivalent. Yet, if tem-
perature variations are considered, then it makes a difference because the stored energy
variation does not contribute to the heat production. In fact, rather both parts (i.e. dissipa-
tive and stored) of the energy spent for delamination should more realistically be considered,
cf. [24]. Also, if a bi-directional evolution of delamination (involving healing) would be con-
sidered, then the contribution to the stored energy becomes especially important because it
just facilitates the driving force for possible healing, cf. [34].

Remark 2.2 (Dynamical problems). In some applications/regimes inertial forces cannot be
neglected and then (2.4a) takes the form

̺
..
u − div

(
De(
.
u) + Ce(u)− div h

)
= F (2.9)

with ̺ > 0 mass density. Implicit discretization of this term is relatively easy to be in-
corporated in the analysis if a generalized concept of solution without energy preservation
is accepted, cf. [24]. Here e.g. (3.12a) augments by the term τ−2

∫
Ω

1
2
̺|u−2uk−1

τ +uk−2
τ |2dx.

Yet, it is well known that the implicit discretization of the inertial term is unsuitable for
computational simulations due to spurious numerical attenuation and efficient calculations of
wave propagation needs more sophisticated formulas. On the other hand, leaving the energy
preservation out, we can also afford D = 0 because the inertial term controls [[u]] “compactly”
in C(ΣC) via Aubin’s-Lions’ theorem, thus we get hyperbolic inviscid delamination problem.

Remark 2.3 (Cohesive contacts). We can also consider zA+z2B instead of zA in (2.4g-i)
and (1

2
A+zB)[[u]]·[[u]] − κ∆z instead of 1

2
A[[u]]·[[u]] in (2.4i), which would be based on the

stored energy with the boundary term of the type

∫

ΓC

1

2
(zA+z2B)

[[
u
]]
·
[[
u
]]
+ κ|∇

S
z|2 dS

with B positive semidefinite and κ > 0; for a more detailed discussion about this quadratic
cohesion model cf. [29, Sect.6.1] and for analysis cf. [2]. Here, it leads to two quadratic
mathematical programs after the semi-implicit discretization and numerical analysis works
for P1-discretization of z and 2-dimensional problems simply by a mutual recovery sequence
z̃k := (z̃ − ‖zk−z‖C(ΓC))

+ suitably adjusted to spatial discretization, cf. the proof of sta-

bility of the limit below (while for 3-dimensional problems more sophisticated damage-type
construction by M.Thomas et al. [38, 39] would be needed).
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3 Weak formulation and semi-implicit discretization

We will use the standard notation W 1,p(Ω) for the Sobolev space of functions having the
derivatives in the Lebesgue space Lp(Ω). If valued in Rn with n ≥ 2, we will write
W 1,p(Ω;Rn), and furthermore, if p = 2, we use the shorthand notation H1(Ω;Rn) =
W 1,2(Ω;Rn). Moreover, we will adopt the notation

W 1,p
ΓD

(Ω\ΓC;R
d) :=

{
v ∈ W 1,p(Ω\ΓC;R

d) : v = 0 on ΓD

}
.

For X a (separable) Banach space, we denote by Cw([0, T ];X) and BV ([0, T ];X) the Banach
spaces of weakly continuous functions [0, T ] → X and of the functions that have bounded
variation on [0, T ], respectively. Notice that these functions are defined everywhere on [0, T ].

Hereafter, the external mechanical loading F and f will be qualified

F ∈
{
L2(0, T ;L6/5(Ω;Rd)) if d = 3,

L2(0, T ;Lq(Ω;Rd)) , q > 1 if d = 2;
(3.1a)

f ∈
{
L2(0, T ;L4/3(ΓN;R

d)) if d = 3,

L2(0, T ;Lq(ΓN;R
d)) , q > 1 if d = 2;

(3.1b)

cf. also Remark 3.4 below. As for the initial data, we impose the following

u0 ∈ W 1,p
ΓD

(Ω\ΓC;R
d) ,

[[
u0
]]
·~n

C
≥ 0 on ΓC, (3.2a)

z0 ∈ L∞(ΓC), 0 ≤ z0 ≤ 1 a.e. onΓC . (3.2b)

We will use the abbreviation for the stored energy Φ and the dissipation rate R:

Φ(u, z) :=





∫

Ω\ΓC

ϕ(e(u)) dx+

∫

ΓC

1

2
zA

[[
u
]]
·
[[
u
]]
dS if [[u]]·~n

C
≥ 0 and 0≤z≤1 on ΓC,

+∞ otherwise, and
(3.3)

R
(
u;
.
u,
.
z) :=





∫

Ω

De(
.
u):e(

.
u) dx+

∫

ΓC

α(
[[
u
]]
)|.z| dS if

.
z ≤ 0 a.e. in ΓC,

+∞ otherwise.
(3.4)

Definition 3.1 (Weak solution). Given an initial data (u0, z0) satisfying (3.2), we call a
couple (u, z) a weak solution to the Cauchy problem for system (2.4) if

u ∈ Cw([0, T ];W
1,p
ΓD

(Ω\ΓC;R
d)) ∩H1(0, T ;H1(Ω\ΓC;R

d)), (3.5a)

z ∈ L∞(ΣC) ∩ BV ([0, T ];L1(ΓC)) , z(·, x) nonincreasing on [0, T ] for a.a. x∈ΓC, (3.5b)

and the couple (u, z) complies, besides the initial condition (2.8), with:
(i) (weak formulation of the) momentum inclusion, i.e.:

[[
u
]]
·~n

C
≥ 0 on ΣC, and (3.6a)∫

Q\ΣC

(
De(
.
u)+C(e(u))

)
:e(v−u) dxdt+

∫

ΣC

zA
[[
u
]]
·
[[
v−u

]]
dSdt

≥
∫

Q

F ·(v−u) dxdt+
∫

ΣN

f ·(v−u) dSdt (3.6b)

for all v in L2(0, T ;W 1,p
ΓD

(Ω\ΓC;R
d)) with [[v]]·~n

C
≥ 0 on ΣC,

(ii) energy inequality for almost all time instant t1 < t2, [t1, t2] ⊂ [0, T ]:

Φ
(
u(t2), z(t2)

)
+

∫ t2

t1

R(u;
.
u,
.
z) dt

≤ Φ
(
u(t1), z(t1)

)
+

∫ t2

t1

∫

Ω

F ·.u dxdt +
∫ t2

t1

∫

ΓN

f ·.u dSdt, (3.6c)
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(iii) semistability for a.a. t ∈ (0, T )

∀z̃ ∈ L∞(ΓC) : Φ
(
u(t), z(t)

)
≤ Φ

(
u(t), z̃

)
+ R

(
u(t); 0, z̃ − z(t)

)
. (3.6d)

Remark 3.2. Due to cancellation of bulk terms, (3.6d) means just∫
ΓC
(z(t)−z̃)(A[[u(t)]]·[[u(t)]] − 2α([[u(t)]])) dS ≤ 0 for all z̃ ∈ L∞(ΓC) such that 0 ≤ z̃ ≤ z(t),

which can be disintegrated so that (3.6d) is equivalent to

z(t, x)A
[[
u(t, x)

]]
·
[[
u(t, x)

]]
≤ 2α(

[[
u(t, x)

]]
) or z(t, x) = 0 for a.a. x ∈ ΓC. (3.7)

In [16, 19], a global stability condition combined with energy conservation was shown to
provide the correct “weak” formulation of rate-independent flow rules. Due to the viscosity
in the bulk, here the semistability (3.6d) plays the role of the global stability condition
of [16, 19]. Moreover, here we do not require the energy conservation (2.7) but we only
assume energy inequality (3.6c) between varying time instances t1 < t2, which is the general
concept of so-called local solutions invented for purely rate-independent systems for a special
crack problem in [41] and further generally investigated in [17], and proved to coincide with
the concept of conventional weak solutions in [28, Prop.2.3]. Although this concept is very
wide in general, here the viscosity together with the convexity of the stored energy in terms
of z ensures good selectivity of this concept, cf. [26, Prop.5.2]. This viscosity/convexity
attribute also excludes the undesired effect of too-early delamination unphysically sliding
to less dissipative Mode I, which may occur in purely elastic model if energy conservation
would be forced, cf. [30] in contrast to [32]. Also we point out that, disregarding the only
one-sided inequality, (3.6c) is the integrated version of the total energy balance (2.7).

To solve the the initial-boundary value problem (2.4) and (2.8) numerically, we must
make some discretization both in time and in space. Rather as an example, let us consider
P1-elements for u and P0-elements for z. Assuming polygonal domains Ω+ and Ω−, we use
a spatial discretization by considering a triangulation Th of Ω\ΓC with a mesh size h > 0
and define the finite-dimensional subspaces

Vh :=
{
v ∈ W 1,∞(Ω;Rd); ∀S ∈ Th : v|S affine

}
, (3.8a)

Zh :=
{
z ∈ L∞(ΓC); ∀S ∈ Th : z|S̄∩ΓC constant

}
. (3.8b)

Moreover, we make the time-discretization by using a suitable semi-implicit scheme using a
popular fractional-step-like strategy, cf. also [25, Remark 8.25]. In contrast to anisothermal
situation in [24], here this leads to alternating variational problems which are even convex,
which allows for a constructive solution. Using an equidistant partition of the time interval
[0, T ] with a time step τ > 0, we seek ukτh ∈ Vh and zkτh ∈ Zh such that [[ukτh]]·~nC

≥ 0 on ΣC

and
∫

Ω\ΓC

(
De

(ukτh−uk−1
τh

τ

)
+C(e(ukτh))

)
:e(v−ukτh) dx+

∫

ΓC

zk−1
τh A

[[
ukτh

]]
·
[[
v−ukτh

]]
dS

≥
∫

Ω

F k
τ ·(v−ukτh) dx+

∫

ΓN

fk
τ ·(v−ukτh) dS (3.9a)

Φ
(
ukτh, z

k
τh

)
+ R

(
ukτh;

ukτh−uk−1
τh

τ
,
zkτh−zk−1

τh

τ

)
≤ Φ

(
uk−1
τh , zk−1

τh

)

+

∫

Ω

F k
τ ·
ukτh−uk−1

τh

τ
dx+

∫

ΓN

fk
τ ·
ukτh−uk−1

τh

τ
dS, (3.9b)

∀z̃ ∈ Zh : Φ
(
ukτh, z

k
τh

)
≤ Φ

(
ukτh, z̃

)
+ R

(
ukτh; 0, z̃ − zkτh

)
. (3.9c)

with F k
τ = τ−1

∫ kτ

(k−1)τ
F (s) ds, fk

τ = τ−1
∫ kτ

(k−1)τ
f(s) ds, and proceeding recursively for k =

1, ...T/τ ∈ N with starting for k = 1 from

u0τh = u0 and z0τh = z0. (3.10)
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The adjective “semi-implicit” is related with usage of zk−1
τh in (3.9a) instead of zkτh which

would lead to a fully implicit formula. Such usage of zk−1
τh leads to the decoupling of the

problem: first we can solve (3.9a) for ukτh and, only after it, the rest of (3.9b,c) for zkτh. Note
that, in a simple way, we discretized rather the weak formulation (3.6) than the classical
formulation (2.4) where we would have faced technical problems e.g. with the interaction
of a piece-quadratic A[[ukτh]]·[[ukτh]] with piecewise constant zkτh−zk−1

τh and a general nonlinear
α([[ukτh]]) in (2.4h-i).

On top of it, we can employ the variational structure of both decoupled problems, cf.
also [25, Remark 8.25]. To cope with the constraints more explicitly, we introduce the smooth
stored energy E and the dissipation (pseudo)potentials R1 and R2 defined here by

E(t, u, z) =

∫

Ω

ϕ(e(u))− F (t)·u dx+
∫

ΓC

1

2
zA

[[
u
]]
·
[[
u
]]
dS −

∫

ΓN

f(t)·u dS, (3.11a)

R1(u;
.
z) = −

∫

ΓC

α(
[[
u
]]
)
.
z dS , R2(

.
u) =

∫

Ω

1

2
De(
.
u):e(

.
u) dx. (3.11b)

Note that the constraints [[u]]·~n
C
≥ 0, 0 ≤ z ≤ 1, and

.
z ≤ 0, originally contained in the

stored energy Φ and the dissipation rate R in (3.3) and (3.4), are now included in (3.12)
below so that we can equivalently use the smooth functionals E(t, ·, ·) and R1(u; ·) and R2 in
(3.11). Also note that R(u;

.
u,
.
z) = R1(u;

.
z) + 2R2(

.
u) and R1(u; ·) is degree-1 homogeneous

so that the factor τ does not show up in the functional in (3.12b), in contrast to the degree-2
homogeneous functional R2(·) in (3.12a). We thus obtain two convex minimization problems:
first, we are to solve

minimize E(kτ, u, zk−1
τh ) + τR2

(u−uk−1
τh

τ

)

subject to u ∈ Vh, [[u]]·~n
C
≥ 0



 (3.12a)

and, denoting its unique solution by ukτh, then we solve

minimize E
(
kτ, ukτh, z

)
+ R1

(
ukτh; z−zk−1

τh

)

subject to z ∈ Zh, 0 ≤ z ≤ zk−1
τh .

}
(3.12b)

For τ > 0 fixed, we denote the left-continuous and the right-continuous piecewise con-

stants, and the piecewise linear interpolants of the discrete solutions {ukτ}
T/τ
k=1 by uτh :

(0, T ) → W 1,p
ΓD

(Ω\ΓC;R
d), uτh : (0, T ) → W 1,p

ΓD
(Ω\ΓC;R

d), and uτh : (0, T ) → W 1,p
ΓD

(Ω\ΓC;R
d)

defined by

uτh(t) = ukτ , uτh(t) = uk−1
τ , uτh(t) =

t− tk−1
τ

τ
ukτ +

tkτ − t

τ
uk−1
τ for t ∈ (tk−1

τ , tkτ ]. (3.13)

In the same way, we shall denote the interpolants of {zkτ }
T/τ
k=1, and of F τ

k , and f
τ
k .

Both for supporting convergence analysis (cf. Sect. 5 below) and for implementation, the
important attribute of the above devised discrete scheme is its numerical stability, i.e. the
numerical results do not exhibit spurious mesh dependency:

Proposition 3.3 (Numerical stability of the discretization). Let us assume (2.5), (3.1),
(3.2), inf α(·) > 0, measd−1(∂Ω+ ∩ ΓD) > 0, and measd−1(∂Ω− ∩ ΓD) > 0, where measd−1

denotes the (d−1)-dimensional measure on Γ. Then, for all τ > 0 and h > 0 and for some
constant S0 > 0 independent of τ and h > 0, the approximate solutions (uτh, zτh, uτh, zτh)
satisfy

∥∥uτh
∥∥
L∞(0,T ;W 1,p

ΓD
(Ω\ΓC;Rd))

≤ S0 , (3.14a)
∥∥uτh

∥∥
H1(0,T ;H1(Ω\ΓC;Rd))

≤ S0 , (3.14b)
∥∥zτh

∥∥
L∞(ΣC)

≤ S0 , (3.14c)
∥∥zτh

∥∥
BV ([0,T ];L1(ΓC))

≤ S0. (3.14d)
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Sketch of the proof. We only sketch the calculations for proving (3.14), since the argument
closely follows the proof of [23, Lemma 7.7] or also [24, Lemma 5.6].

A discrete analog of (3.6c) can be obtained by testing the optimality conditions for
(3.12a) and (3.12b) respectively by ukτh−uk−1

τh and zkτh−zk−1
τh (which, in fact, means plugging

v = uk−1
τh into a discrete version of (3.6b) for the former test), and by adding it, benefiting

from the cancellation of the terms ±Φ(ukτh, z
k−1
τh ) and by the separate convexity of Φ(·, ·), i.e.

both Φ(u, ·) and Φ(·, z) are convex. This gives the estimate

Φ(ukτh, z
k
τh) + τ

k∑

l=1

R

(
ulτh;

ulτh−ul−1
τh

τ
,
zlτh−zl−1

τh

τ

)

≤ Φ(u0, z0) + τ

k∑

l=1

∫

Ω

F l
τ ·
ulτh−ul−1

τh

τ
dx+

∫

ΓN

f l
τ ·
ulτh−ul−1

τh

τ
dS

≤ Φ(u0, z0) + ‖F l
τ‖L6/5(Ω;Rd)

∥∥∥
ulτh−ul−1

τh

τ

∥∥∥
L6(Ω;Rd)

+ ‖f l
τ‖L4/3(ΓN;Rd)

∥∥∥
ulτh−ul−1

τh

τ

∥∥∥
L4(ΓN;Rd)

,

≤ Φ(u0, z0) + Cδ‖F l
τ‖2L6/5(Ω;Rd) + Cδ‖f l

τ‖2L4/3(ΓN;Rd) + δ
∥∥∥
ulτh−ul−1

τh

τ

∥∥∥
2

H1(ΓN;Rd)
, (3.15)

where δ > 0 and Cδ depends, beside δ, also on the norms of the embedding H1(Ω\ΓC) ⊂
L6(Ω) and of the trace operator H1(Ω\ΓC) → L4(ΓN). Then we choose δ > 0 so small that
the last term can be absorbed in the R-term by using the assumption (2.5c). Then all the
a-priori estimates (3.14) easily follow. �

Remark 3.4. The integrability in (3.1) designed rather for d = 3 can be improved for
d = 2. One can also consider the alternative qualification, e.g. for p > d, one can consider
F ∈ W 1,1(I;L1(Ω;Rd)) and f ∈ W 1,1(I;L1(ΓN;R

d)) and then to perform the a-priori estimate
(3.15) by using the discrete by-part integration (=summation) and the discrete Gronwall
inequality, and the coercivity (2.5a) instead of (2.5c). For the purpose of a-priori estimates
only, one can also weaken (2.5c) to positive semi-definiteness (and in particular the rate-
independent, inviscid problem with D = 0), although the convergence seems not guaranteed,
cf. also Remark 5.4 below.

Remark 3.5. If we assume time-dependent boundary conditions such that u(t) = uD(t)
a.e. on ΓD for every t ∈ [0, T ] for some uD(t) ∈ W 1,p(Ω;Rd) Then the shift u 7→ u + uD(t)
transform the problem to zero boundary conditions for u, i.e., u0 = 0 on ΓD.

4 Computer implementation and illustrative simulations

We demonstrate varying mode-mixity of delamination on a relatively simple two-dimensional
example motivated by the pull-push shear experimental test used in engineering practice [4].
Intentionally, we use the same geometry, shown in Fig. 1, as in [30, 32] in order to have a
comparison of our weak solution of the engineering non-associative visco-elastic model with
a maximally-dissipative local solution and the energetic solution of the associative inviscid
model presented respectively in [32] and in [30]. In contrast to Sections 2–3, only one bulk
domain is considered and ΓC is a part of its boundary but this modification is straightforward;
alternatively, one may also think about Ω− as a completely rigid body in the previous setting.
Here Ω+ is a two-dimensional rectangular domain glued on the most of its bottom side ΓC

with the Dirichlet loading acting on the right-hand side ΓD in the direction (1, 0.6), cf. Fig. 1,
increasing linearly in time with velocity 0.3 mm/s.

���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������

��������������������������������������������
��������������������������������������������
��������������������������������������������
�������������������������������������������� ΓN

ΓN

ΓD

ΓC

elastic body

rigid obstacle
adhesive

L = 250mm

H =
12.5mm

loa
din

g

Fig. 1. Geometry and boundary conditions of the problem considered. The length of the
initially glued part ΓC is 0.9L = 225mm, the adhesive layer has zero thickness.
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The bulk material is considered linear, homogeneous, and isotropic with the Young mod-
ulus E = 70 GPa and Poisson’s ratio ν = 0.35 (which corresponds to aluminum); thus
Cijkl =

νE
(1+ν)(1−2ν)

δijδkl +
E

2(1+ν)
(δikδjl + δilδjk) with δij standing for the Kronecker symbol.

For the viscosity tensor we consider D = χC with a relaxation time χ = 0.001 s, which is
very small with the relation to the loading speed we have considered; actually, we did not
see any essential difference for just merely elastic material χ = 0 although the model has
only a limited validity for this case, cf. Remark 5.4 below.

For the adhesive, we took a normal stiffness κn =150 GPa/m, a tangential stiffness
with κt = κn/2, and the Mode-I fracture toughness a

I
= 187.5 J/m2. Furthermore, the

engineering model (1.2) was used with λ = 0.333 (and with ǫ = 0) which corresponds to a
rather moderate mode-sensitivity a(90◦)/aI = aII/aI = 4.

The numerical stability, i.e. the a-priori estimates (3.14), fully applies. The (rather
negligible) shortcuts is that we take p = 2 (instead of p > 2) so that the convergence in
Appendix below applies only up to this (small) discrepancy.

For the computer implementation, it is important that (3.12b) represents a linear-
quadratic program, which allows for algorithmically a very efficient solution. Furthermore,
(3.12b) is even a linear program. On top of it, as we used P0-elements, cf. (3.8b), it localizes
on particular elements on ΓC, so that its solution is trivial and fast; for this effect, it is also
important that we do not need to consider any gradient of z, in contrast to the associative
model [29, 30, 32]. For the Dirichlet loading, we have used Remark 3.5.

A noteworthy attribute of our problem is that the inelastic process of delamination occurs
on the boundary ΓC while in the bulk domain(s) it is linear. This allows for elimination of
nodal values arising by using P1-elements (3.8a) inside Ω and considerable reduction of
degrees of freedom by considering only nodal or element values on ΓC. In fact, this idea has
been systematically exploited even on the continuous level when implementing the boundary-
element method, cf. [21,22,30–32,37], although it is still not fully supported by a convergence
analysis like Proposition 5.1 below due to general substantial theoretical difficulties related
to this method.

Anyhow, for the computational experiments presented here partially also with the goal
to document the usually not investigated modelling issues (in particular the energetics), we
use a shortcut in implementing the spacial discretization (3.12) with (3.8) and, instead of an
algebraic elimination of the interior nodal point, we made this elimination by the collocation
boundary-element method. Here also our choice D = χC makes the implementation of this
method simpler, cf. [27, Remark 6.2]. For the results presented on Figures 2-3, we have
used 81 elements on ΓC, i.e. h = 2.77̄mm (=the size of a boundary segment in equidistant
discretization), and the time step τ = 2.22̄ms.

This example exhibits remarkably varying mode of delamination. At the beginning the
delamination is performed by a mixed mode close to Mode I given essentially by the direction
of the Dirichlet loading, cf. Figure 1, while later it turns rather to nearly pure Mode II. Yet,
at the very end of the process, due to elastic bending the delamination starts performing also
from the left-hand side of the bar opposite to the loading side, and thus again a mixed mode
occurs. This relatively complicated mixed-mode behaviour is depicted in Figure 2(right),
showing essential qualitative difference from the energetic solution which exhibits a non-
physical tendency to slide to less-dissipative Mode I, cf. [30, Fig. 7]. We have here the energy
(im)balance (3.6c) as an important ingredient and thus, in contrast to usual engineering
calculations, we trace also the energetics of the model, depicted on Figure 2(left).

The evolution of the deformation of the visco-elastic domain (through the displacement
u) and spacial distribution of the delamination parameter z are depicted in Figure 3 at eight
snapshots selected not uniformly to visualize interesting effects when delamination starts to
be completed. In particular, the delamination propagating from both sides at the very end
(mentioned already above) is seen there.
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Fig. 2. Left: Time evolution of the energies: the bulk and the interfacial parts of
E(t, ūτ (t), z̄τ (t)) +

∫ t
0 R2(

.
uτ )dt, the interfacial dissipated energy R1(z̄τ (t)−z0), their

sum=total energy (=the left-hand side of (3.6c)), and the work of external loading
(=the right-hand side of (3.6c)).
Right: Mixity-mode distribution along ΓC evaluated according the overall dissipated
energy related to a

I
after the delamination has been completed: value= 1∼Mode I,

value= 4= a
II
/a

I
∼Mode II.

Eventually, the joint convergence from Proposition 5.1 below for time- and FEM-spatial
discretization (although here implemented by BEM) is demonstrated in Figures 4 and 5 for
two different gradually refining space/time discretizations. We choose the scenario keeping
the ratio τ/h constant, although Proposition 5.1 itself does not give any particular suggestion
in this respect. Anyhow, the tendency of convergences is clearly seen, although we naturally
do not know the exact solution so that we cannot evaluate any actual error. On top of
it, the exact solution does not need to be unique so we even do not have guaranteed the
convergence of the whole sequence of the approximate solutions and, moreover, the simplified
implementation by collocation BEM does not have guaranteed convergence, in contrast to
FEM stated in Proposition 5.1.

Remark 4.1 (Non-conservation of energy). It is interesting to check the energy (im)balance
(3.6c). In Figure 2(left), we can see it depicted for t1 = 0 as a function of time t2: the upper
line is the right-hand side of (3.6c) while the line below is the left-hand side of (3.6c). We
can clearly see that the difference is not zero and is increasing in time, which is in accord
with (3.6c) because otherwise, if the difference would decrease on some time interval [t1, t2],
(3.6c) could not be valid on this interval. This non-vanishing difference between the left-
and the right-hand sides of (3.6c) is likely not because of a possible numerical possible error
(as Fig. 4 shows a nice convergence) but seems to have a physical meaning that some part
of energy is lost (dissipated) due to some neglected dissipation mechanisms which would
guarantee energy conservation. This would certainly happen if the bulk viscosity would
be completely neglected, as now well documented in [27, 31]. Here, although we have bulk
viscosity, this viscosity is of a slower growth than the stored energy and thus might not
be strong enough for fast processes, as observed at the fast completion of the delamination
process here. Nevertheless, superquadratic growth of the viscosity would recast our model to
the so-called doubly-nonlinear problem and would bring additional mathematical difficulties.
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k=100

k=150

k=250

k=340

k=380

k=405

k=409

k=410

Fig. 3. Time evolution at eight snapshots of the geometrical configuration until complete de-
lamination (displacement depicted magnified 100×) and the spacial distribution of the
mode-mixity angle ψG and the delamination parameter z along the interface ΓC.
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Fig. 4. Convergence test of the quantities from Figure 2. Coarse= 27 elements on ΓC,
medium=54 elements, and fine=81 elements. The ratio τ/h is constant.
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Fig. 5. Convergence test of the total force response evolving in time: the horizontal
(left) and the vertical (right) components.

Remark 4.2 (Comparison with other models/solutions). As the viscosity has been chosen
low, this example bears a good qualitative comparison (including the energy gap discussed in
Remark 4.1) with the associative inviscid model with interfacial plasticity from [29,30], pro-
vided maximally-dissipative local solutions are considered [32]. The non-associative model
allows for a general monotone dependence a(·) not necessarily just the special ansatz (1.2)
which enables a possible fitting to that associative model which involves only few parameters.
Also, the non-associative model allows do not involve any gradients of z which allows sim-
pler computational implementation, as mentioned already above. On the other hand, the
“vanishing-viscosity” asymptotics of the non-associative model towards the inviscid, rate-
independent model is not entirely clear, cf. Remark 5.4 below.

5 Appendix: convergence

In terms of the piecewise constant/affine interpolants introduced in Section 3, cf. (3.13), the
discrete scheme (3.9) summed for k = 1, ..., T/τ can be written “more compactly” as:

∀v∈L1(I;Vh) :

∫

Q\ΣC

(
De

(.
uτh

)
+C(e(ūτh))

)
:e(v−ūτh) dxdt

+

∫

ΣC

zτhA
[[
ūτh

]]
·
[[
v−ūτh

]]
dSdt

≥
∫

Q

F̄τ ·(v−ūτh) dxdt +
∫

ΣN

f̄τ ·(v−ūτh) dSdt (5.1a)

∀t1<t2 , t1, t2∈{kτ}T/τk=1 : Φ
(
uτh(t2), zτh(t2)

)
+

∫ t2

t1

R1

(
ūτh;

.
zτh

)
+ R2

(.
uτh

)
dt

≤ Φ
(
uτh(t1), zτh(t1)

)
+

∫ t2

t1

∫

Ω

F̄τ ·
.
uτh dxdt +

∫ t2

t1

∫

ΓN

f̄τ ·
.
uτh dSdt, (5.1b)

∀z̃∈Zh : Φ
(
ūτh(t), z̄τh(t)

)
≤ Φ

(
ūτh(t), z̃

)
+ R

(
ūτh(t); 0, z̃ − z̄τh(t)

)
. (5.1c)

We now enlist further assumptions needed for convergence:

∃η > 0 ∀e1, e2 ∈ R
d×d
sym : (ϕ′(e1)− ϕ′(e2)):(e1 − e2) ≥ η|e1−e2|p, (5.2a)

α ∈ C(Rd;R), (5.2b)
⋃

h>0

Vh dense in W 1,p(Ω\ΓC;R
d) & Vh0

⊂ Vh1
if h1 < h0 . (5.2c)

Proposition 5.1 (Unconditional convergence). Let the assumptions of Proposition 3.3 with
p > d as well as (5.2) be fulfilled. Then, for τ → 0 and h → 0, the approximate solutions
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(uτh, zτh) converge in terms of subsequences in the sense that

uτh → u in Lq(I;W 1,p(Ω\ΓC;R
d)), (5.3a)

z̄τh(t)
∗
⇀ z(t) in L∞(ΓC) for all t ∈ Ī (5.3b)

for any 1 ≤ q < ∞, and any (u, z) obtained by such converging subsequences is a weak
solution to the adhesive contact problem due to Definition 3.1. In particular, such weak
solutions do exist.

Sketch of the proof. By the a-priori estimates (3.14) and by Banach’s principle, we can select
a weakly* converging subsequence in the spaces indicated in (3.14). Moreover, by Helly’s
selection principle, we can consider this subsequence so that (5.3b) holds.

Now we improve the weak* convergence uτh
∗
⇀ u in the space L∞(I;W 1,p(Ω\ΓC;R

d)) ∩
H1(I;H1(Ω\ΓC;R

d)) by proving also the strong convergence in Lp(I;W 1,p(Ω\ΓC;R
d)). To

this goal, let us exploit the uniform monotonicity of the operator −divC(e(·)), cf. (5.2a),
and use (5.1a) for v = 2ūτh−vh with some vh ∈ L∞(I;Vh):

η‖e(ūτh−vh)‖pLp(Q;Rd×d)
≤

∫

Q\ΣC

(
C(e(ūτh))−C(e(vh))

)
:e(ūτh−vh) dxdt

≤
∫

Q\ΣC

F̄τ ·(ūτh−vh)−
(
De(
.
uτh) + C(e(vh))

)
:e(ūτh−vh) dxdt

+

∫

ΣC

zτhA
[[
ūτh

]]
·
[[
ūτh−vh

]]
dSdt +

∫

ΣN

f̄τ ·(ūτh−vh) dSdt

≤
∫

Q\ΣC

F̄τ ·(ūτh−vh)− C(e(vh)):e(ūτh−vh)− De(
.
uτh):e(ūτh−vh) dxdt

+

∫

ΣC

zτhA
[[
ūτh

]]
·
[[
ūτh−vh

]]
dSdt +

∫

ΣN

f̄τ ·(ūτh−vh) dSdt−
∫

Q\ΣC

De(u̇τh):e(ūτh−vh) dxdt .

(5.4)

The last term can be estimated as follows, which shows its nonpositivity

−
∫

Q\ΣC

De(u̇τh):e(ūτh−vh) dxdt =
T/τ∑

k=1

∫

Ω\ΓC

De(uk−1
τh −ukτh):e(ukτh) +

∫

Q\ΣC

De(u̇τh):e(vh) dxdt

≤
T/τ∑

k=1

∫

Ω\ΓC

1

2
De(uk−1

τh ):e(uk−1
τh )− 1

2
De(ukτh):e(u

k
τh) dx+

∫

Q\ΣC

De(u̇τh):e(vh) dxdt

=
1

2

∫

Ω\ΣC

De(u0):e(u0)− De(u
T/τ
τh ):e(u

T/τ
τh ) dx+

∫

Q\ΣC

De(u̇τh):e(vh) dxdt. (5.5)

Now, using (5.2c), we take vh → u in Lp(I;W 1,p(Ω\ΓC;R
d)) and notice that the right-hand

side in (5.5) tends to zero which forces the left-hand side of the expression in (5.4) to vanish,
as well. This yields strong convergence ūτh → u in Lp(I;W 1,p(Ω \ΓC;R

d)). By interpolation
of L∞(I;W 1,p(Ω \ ΓC;R

d)) and Lp(I;W 1,p(Ω\ΓC;R
d)), we eventually obtain (5.3a).

The limit passage in (5.1a) is simple with the kinds of convergence proved above.
For the limit passage in (5.1b), we can always consider τ > 0 so small, that chosen time

instants t1 < t2 are elements of {kτ}k and we write

∫ t2

t1

R1

(
ūτh;

.
zτh

)
dt =

∫ t2

t1

∫

ΓC

α(
[[
uτh

]]
)|.zτh| dSdt

=

∫ t2

t1

∫

ΓC

α
([[
uτh

]])
|.zτh| dSdt+

∫ t2

t1

∫

ΓC

(
α
([[
uτh

]])
− α

([[
uτh

]]))
|.zτh| dSdt. (5.6)
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We can see that we need the convergence of α([[uτh]]) → α([[u]]) in C(ΣC). We observe that
the sequence {uτh : I → H1(Ω\ΓC)}τ>0,h>0 is equicontinuous because

∥∥uτh(t1)−uτh(t2)
∥∥
H1(Ω\ΓC)

≤
∥∥∥
∫ t2

t1

.
uτh dt

∥∥∥
H1(Ω\ΓC)

≤
∫ t2

t1

∥∥.uτh
∥∥
H1(Ω\ΓC)

dt

≤
∥∥.uτh

∥∥
L2(I;H1(Ω\ΓC))

‖1‖L2([t1,t2]) = |t1−t2|1/2
∥∥.uτh

∥∥
L2(I;H1(Ω\ΓC))

(5.7)

for any 0 ≤ t1 < t2 ≤ T . By compactness of the embedding W 1,p(Ω\ΓC) ⊂W 1−ǫ,p(Ω\ΓC) and
by Arzelá-Ascoli-type arguments based on (5.7), cf. [25, Lemma 7.10], we have the strong
convergence uτh → u in C(Ī;W 1−ǫ,p(Ω\ΓC)) with a small ǫ > 0. By the trace operator
W 1−ǫ,p(Ω\ΓC) → C(ΓC), we then have also the convergence [[uτh]] → [[u]] in C(ΣC). Using
(5.2b), we eventually have α([[uτh]]) → α([[u]]) in C(ΣC). This allows us to pass to the limit
in the first term of (5.6). Since | .zτh| → | .z| weakly* in the sense of measures on ΣC, we
conclude that

α
([[
uτh

]])
|.zτh| → α

([[
u
]])
|.z| weakly* in the sense of measures on ΣC, (5.8)

where | .z| denotes the variation of the measure
.
z; in fact, here simply | .z| = − .z, since .z ≤ 0.

Using again (5.7), we have
∥∥ūτh−uτh

∥∥
L∞(I;H1(Ω\ΓC;Rd))

≤ τ 1/2
∥∥.uτh

∥∥
L2(I;H1(Ω\ΓC;Rd))

(5.9)

and, by interpolation with the L∞(I;W 1,p(Ω\ΓC;R
d))-estimate, we also obtain that for

ǫ > 0 arbitrarily small
∥∥ūτh−uτh

∥∥
L∞(I;W 1,p−ǫ(Ω\ΓC;Rd))

→ 0. For ǫ < p−d, we have still

the continuous trace operator W 1,p−ǫ(Ω\ΓC;R
d) → C(ΓC). Using (5.2b), we also have

α([[ūτh]]) − α([[uτh]]) → 0 in L∞(I;C(ΓC)). Since { .zτh}τ>0,h>0 is bounded in L1(ΣC), we
then conclude that the second term on the right-hand side of (5.6) tends to zero as τ → 0.

Thus, altogether
∫ t2
t1
R1(ūτh;

.
zτh) dt →

∫ t2
t1
R1(u;

.
z) dt. Furthermore, by weak lower semi-

continuity, we have lim infτ→0, h→0

∫ t2
t1
R2(

.
uτh) dt ≥

∫ t2
t1
R2(

.
u) dt. If t1 ∈ [0, T ) is such that

uτh(t1) → u(t1) strongly in W 1,p(Ω \ ΓC ;R
d) then the remaining terms in (5.1b) can be

handled even by semicontinuity and continuity to obtain (notice that ϕ is p-Lipschitz con-
tinuous)

Φ
(
u(t2), z(t2)

)
+

∫ t2

t1

R(u;
.
u,
.
z) dt ≤ Φ

(
u(t1), z(t1)

)
+

∫ t2

t1

∫

Ω

F ·.u dxdt +
∫ t2

t1

∫

ΓN

f ·.u dSdt .

(5.10)

The limit passage in (5.1c) needs an explicit construction of a so-called mutual recovery
sequence. Take t ∈ [0, T ] for which (5.1c) holds. We want to prove (3.6d). Take arbitrary
z̃ ∈ L∞(ΓC) such that z̃ ≤ z(t, ·) because otherwise the inequality holds trivially. Here we
can take

z̃τh(t, x) =

{
z̄τh(t, x)Πh

(
z̃(x)
z(t,x)

)
if z(t, x) 6= 0

0 otherwise,
(5.11)

where Πh is the projector L
∞(ΓC) → Zh making piecewise constant averages, cf. [18, Sect.4.6].

We see that z̃τh ≤ zτh. Notice that Πh(z̃/z) → z̃/z as h→ 0 in any Lp(ΓC) with +∞ > p ≥ 1.
Hence, z̃τh → z̃ weakly* in L∞(ΓC). We get from (5.1c) that

0 ≤ lim
τ→0

lim
h→0

(Φ(ūτh(t), z̃τh) + R1(ūτh(t), z̃τh − z̄τh(t))− Φ(ūτh(t), z̄τh))

= lim
τ→0

lim
h→0

∫

ΓC

(
1

2
A
[[
ūτh

]]
·
[[
ūτh

]]
+ α

[[
ūτh

]])
(z̃τh − z̄τh(t)) dS

=

∫

ΓC

(1
2
A
[[
u
]]
·
[[
u
]]
+ α

[[
u
]])

(z̃−z(t)) dS = Φ(u(t), z̃) + R1(u(t), z̃−z(t))− Φ(u(t), z(t)) ,
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which proves (3.6d).
As the considered finite-element discretization always exists as well as solutions to the

recursive problem (3.12), the existence of an energetic solution is proved by this constructive
method. �

Remark 5.2 (Energy conservation). The equality in (3.6c) is still unclear. Let us outline
the difficulties. Within this model, the proof would need (2.5a) to hold for p = 2, which
however contradicts our assumption p > d in the physically interesting multidimensional
cases. Assume further also that (5.2a) hold with p = 2, so that we also have

∃C > 0 ∀e ∈ R
d×d
sym : |ϕ′(e)| ≤ C(1 + |e|) . (5.12)

Then we can prove the energy inequality opposite to (3.6c). Consider for simplicity t1 = 0
and t2 = T . Following [24] we notice that

Φ(u(T ), z(T ))− Φ(u0, z0) +

∫

ΣC

α(
[[
u
]]
)|.z| dSdt ≥

∫ T

0

〈
λ,
.
u
〉
dt , (5.13)

where λ ∈ L2(0, T ;W 1,p(Ω\ΓC;R
d)∗) with λ(t) ∈ ∂uΦ(u(t), z(t)) for a.a. t ∈ (0, T ) and where

“| .z| dSdt” denotes the integration with respect to the Borel measure | .z| on ΣC . We have
that λ ∈ ∂uΦ(u, z) if and only if there is ℓ ∈ ∂J(u) and for all v ∈ W 1,p(Ω \ ΓC;R

d)

〈
λ, v

〉
=

∫

Ω

C(e(u)):e(v) dx+

∫

ΓC

zA
[[
u
]]
·
[[
v
]]
dS +

〈
ℓ, v

〉
,

where 〈·, ·〉 denotes the appropriate duality pairing. Here the convex function J : H1(Ω \
ΓC;R

d) → [0; +∞] is defined as follows

J(u) =

{
0 if [[u]]·~n

C
≥ 0 ,

+∞ otherwise.

In order to prove (5.13) for a chosen selection λ(t) ∈ ∂uΦ(u(t), z(t)) we use (3.6d) and
approximations of Stieltjes integrals by Riemann sums; [5]. Take n ∈ N and a partition
0 = tn0 < tn1 < . . . < tnNn

= T such that maxi(t
n
i+1 − tni ) < 1/n and such that the function

An : [0, T ] → L∞(ΓC) defined as An(t) = α([[u(tni−1)]]) if tni−1 < t ≤ tni . We can assume,

without loss of generality, that (3.6d) holds for all timesteps {tni }Nn−1
i=0 . The sequence {An}

satisfies

An → α(
[[
u
]]
) in L∞(ΓC) as n→ ∞ . (5.14)

This limit passage follows from the fact that u ∈ H1([0, T ];H1(Ω \ ΓC;R
d)), so that u :

[0, T ] → H1(Ω \ ΓC;R
d) is Hölder continuous on [0, T ], which implies uniform continuity of

[[u]] : [0, T ] → L∞(ΓC). Finally, (5.14) follows by approximations of uniformly continuous
functions by piecewise constant interpolants. Further, we test (3.6d) at tni−1 against z̃ = z(tni )
to get

Φ(u(tni−1), z(t
n
i−1)) ≤ Φ((u(tni−1), z(t

n
i )) + R1(u(t

n
i−1), z(t

n
i )− z(tni−1))

= Φ((u(tni ), z(t
n
i ))−

∫

ΓC

An(t)(z(t
n
i )− z(tni−1)) dS −

∫ tni

tni−1

〈
λn(s),

.
u(s)

〉
ds (5.15)

whenever λn(s) ∈ ∂uΦ(u(s), z(t
n
i )) for any s ∈ (tni−1, t

n
i ]. The last equality is based on the

chain rule for d
dt
Φ(u(t), z(tni )); cf. [43, Prop.IX.4.11]. Notice that 〈λn,

.
u〉 is well-defined even

for
.
u ∈ H1(Ω\ΓC;R

d) due to (5.12). Summing up (5.15) for i = 1, . . . , Nn and passing to the
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limit inferior for n→ ∞ (in fact, the for the dissipative term on the left hand side even the
limit exists), we have in view of (5.14) and [24] that

Φ(u(T ), z(T ))− Φ(u0, z0)−
∫

ΣC

α(
[[
u
]]
)
.
z dSdt ≥

∫ T

0

〈
λ(s),

.
u(s)

〉
ds .

Further, notice that
∫ tn

2

tn
1

〈ℓ, .u〉 ds = J(u(tn2 ))− J(u(tn1 )) = 0, hence we have

Φ(u(T ), z(T ))− Φ(u0, z0)−
∫

ΣC

α(
[[
u
]]
)
.
z dSdt ≥

∫

Q

C(e(u)):e(
.
u) dxdt +

∫

ΣC

zA
[[
u
]]
·
[[.
u
]]
dS dt .

(5.16)

Taking into account (3.6b) we see that J defined by

〈
J, v

〉
:=

∫

Ω\ΓC

(
De(
.
u)+C(e(u))

)
:e(v) dx+

∫

ΓC

zA
[[
u
]]
·
[[
v
]]
dS −

∫

Ω

F ·v dx−
∫

ΓN

f ·v dS (5.17)

is such that ∫ T

0

J(v) dt−
∫ T

0

J(u) dt ≥
∫ T

0

〈
J, v−u

〉
dt ,

i.e. J(t) ∈ ∂J(u(t)). Therefore,
∫ T

0
〈J, .u〉 dt = 0 and together with (5.16) we get that

Φ
(
u(t), z(t)

)
+

∫ t

0

R(u;
.
u,
.
z) dt ≥ Φ

(
u0, z0

)
+

∫ t

0

∫

Ω

F ·.u dxdt +
∫ t

0

∫

ΓN

f ·.u dSdt .

Remark 5.3 (Linear but nonlocal elasticity). We can also consider linear but nonlocal stress

σ = De(
.
u) + Ce(u) +

∫

Ω

H(x, ξ)
(
e(u(x)−u(ξ))

)
dξ, (5.18)

with some (presumably only small) 4th-order tensor H. This yields a contribution

1

2

d∑

i,j,k,l=1

∫

Ω×Ω

Hijkl(x, ξ)eij(u(x)−u(ξ))ekl(u(x)−u(ξ)) dξdx

to the stored energy. Assuming that, for some ǫ > 0 and ζ > 0 and for all x, ξ ∈ Ω, it
holds Hijkl(x, ξ) ≥ ζδikδjl/|x−ξ|d+2ǫ, we obtain estimates in W 1+ǫ,2(Ω\ΓC;R

d) instead of
W 1,p(Ω\ΓC;R

d) we used above. For d = 2, any 0 < ǫ < 1 is sufficient for the convergence
and, for ǫ < 1/2, we can still use P1-elements for the space discretization. For d = 3,
ǫ > 1/2 is needed for the compact embedding W 1+ǫ,2(Ω\ΓC) ⊂ C(Ω̄+∪Ω̄−) and thus for the
convergence, which unfortunately excludes discontinuities of gradients and thus P1-element
so that P2-elements would have to be used. In the latter case, one could also consider the
concept of nonsimple materials. A definite benefit would be an energy conservation [24].

Remark 5.4 (Towards the rate-independent evolution). We can replace D with εD in the
model and, like in the mixity-insensitive case [27, 31], study the vanishing-viscosity limit
for ε ց 0 towards the rate-independent limit. Let us denote (uε, zε) a weak solution to
the problem (2.4), i.e., it satisfies Definition 3.1 with our modified viscosity. Then we get
the following a-priori estimate

√
ε‖e( .uε)‖L2(Q\ΣC) ≤ S0. We consider a weak∗ limit (u, z) ∈

L∞(0, T ;W 1,p(Ω\ΓC;R
d))× (L∞(ΣC)∩BV([0, T ];L1(ΓC))) of a (sub)sequence of solutions for
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εց0. Further, using (5.2a), we estimate for εց0 that:

η
∥∥e(uε−u)

∥∥p

Lp(Q;Rd×d)
≤

∫

Q\ΣC

(
C(e(uε))− C(e(u))

)
:e(uε−u) dxdt

≤
∫

Q\ΣC

(C(e(uε))− C(e(u))):e(uε−u) dxdt

+

∫

ΣC

zεA
[[
uε−u

]]
·
[[
uε−u

]]
dSdt

≤ −
∫

Q\ΣC

εDe(
.
uε):e(uε−u) + C(e(u)):e(uε−u) dxdt

−
∫

ΣC

zεA
[[
u
]]
·
[[
uε−u

]]
+ (zε−z)A

[[
uε
]]
·
[[
uε
]]
dxdt

+

∫

Q

F ·(uε−u) dxdt+
∫

ΣN

f ·(uε−u) dSdt→ 0 .

Hence, we have for almost every t ∈ [0, T ] that e(uε(t)) → e(u(t)) in Lp(Ω\ΓC;R
d×d). We

thus obtain an approximable solution in the sense of [7,12,41] to the rate-independent mixity-
sensitive model. Moreover, also (3.6d) holds for a.a. t ∈ [0, T ]. It is not obvious, however,

if it holds that lim infε→0

∫ t2
t1

∫
ΓC

α([[uε]])
.
zε dSdt ≥

∫ t2
t1

∫
ΓC

α([[u]])
.
z dSdt, which is needed to

pass to the limit in the energy (im)balance. In this sense, the associative model from [29–32]
remains still more justified for the merely rate-independent mixity-sensitive evolution.
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[26] T. Roub́ıček: Rate independent processes in viscous solids at small strains. Math.
Methods Appl. Sci. 32 (2009), 825–862.
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