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Cornelius Lanczos, March 9, 1947

“The reason why I am strongly drawn to such
approximation mathematics problems is ... the fact that
a very “economical” solution is possible only when it is very “adequate”.

To obtain a solution in very few steps
means nearly always that one has found a way
that does justice to the inner nature of the problem.”
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Albert Einstein, March 18, 1947

“Your remark on the importance of
adapted approximation methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.”
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Algebraic iterative computations

● Computational cost of finding sufficiently accurate approximation to the
exact solution heavily depends on the particular data, i.e.,

❋ on the underlying real world problem,
❋ on the mathematical model,
❋ on its discretisation.

● Evaluation of cost must take into account rounding errors.

● Evaluation of accuracy of the computed approximation
can not be done within the algebra.
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Krylov subspace methods for linear problems

A relatively small number of nonlinear iterations which

● in principle (assuming exact arithmetic) form, when continued,
a finite process

● can not be treated as a sequence of linearisations,

● are possibly significantly affected by rounding errors.

Always preconditioning!
If the preconditioned matrix approximates identity, then any reasonable
iterative method performs well, and the iterative life is greatly simplified.
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The story goes a way back ...

● Euclid (300BC), Hippassus from Metapontum (before 400BC), ...... ,

● Bhascara II (1150), Brouncker and Wallis (1655-56): Three term
recurences (for numbers)

● Euler (1737, 1748), ...... , Brezinski (1991), Khrushchev (2008)

● Gauss (1814), Jacobi (1826), Christoffel (1858, 1857), ....... ,
Chebyshev (1855, 1859), Markov (1884), Stieltjes (1884, 1893-94):
Orthogonal polynomials, quadrature, analytic theory of continued
fractions, problem of moments, minimal partial realization,
Riemann-Stieltjes integral
Gautschi (1981, 2004), Brezinski (1991), Van Assche (1993),
Kjeldsen (1993),

● Hilbert (1906, 1912), ...... , Von Neumann (1927, 1932), Wintner (1929)
resolution of unity, integral representation of operator functions in
quantum mechanics
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In the language of matrix computations

● Krylov (1931), Gantmakher (1934), Lanczos (1950–52, 1952c),
Hestenes and Stiefel (1952), Rutishauser (1953), Henrici (1958), Stiefel
(1958), Rutishauser (1959), Vorobyev (1958, 1965), .....

● Gordon (1968), Schlesinger and Schwartz (1966), Reinhard (1979), ... ,
Horáček (1983), Laptev, Nabokov and Safronov (2003), Simon (2007)

● Paige (1971), Reid (1971), Greenbaum (1978, 1989), .......

● Paige and Saunders (1975, 1982), van der Vorst (1982), Elman (1982),
Saad and Schultz (1986), .....

● Magnus (1962a,b), Gragg (1974), Kalman (1979), Gragg, Lindquist
(1983), Gallivan, Grimme, Van Dooren (1994), ....

Are there still any challenges left ?
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Outline

1. Nonlinearity of Krylov subspace methods

2. CG and the convergence bound for CSI

3. Clusters = fast convergence ?

4. Algebraic error in numerical PDEs

5. Conclusions
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Point 1: Nonlinearity of Krylov subspace methods
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1 Krylov subspace methods

A x = b

An xn = bn

xn approximates the solution x
using the subspace of small dimension.

Sn ≡ Kn(A, r0) ≡ span {r0, Ar0, · · · , A
n−1r0} −→ moments !
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1 Conjugate gradients (CG): A HPD

‖x− xn‖A = min
u∈x0+Kn(A,r0)

‖x− u‖A

with the formulation via the Lanczos process, w1 = r0/‖r0‖ ,

A Wn = Wn Tn + δn+1wn+1e
T
n , Tn = W ∗

n(A, r0) A Wn(A, r0) ,

and the CG approximation given by

Tn yn = ‖r0‖e1 , xn = x0 + Wn yn .

An = Qn A Qn = WnW ∗
n A WnW ∗

n = Wn Tn W ∗
n ,
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1 Computational algorithm

Given x0 (in approximating b∗A−1b we set x0 = 0 ), r0 = b−Ax0,
p0 = r0

For n = 1, 2, . . .

γn−1 = (rn−1, rn−1)/(pn−1, Apn−1)

xn = xn−1 + γn−1 pn−1

rn = rn−1 − γn−1 Apn−1

δn = (rn, rn)/(rn−1, rn−1)

pn = rn + δn pn−1.

Search directions are given by the modified residuals, γn−1 gives the line
search minimum, δn ensures the local A-orthogonality of the direction
vectors. No moments are visible. If we wish to get an insight, we need
them.
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1 Numerical PDE connection of CG

Find u ≡ u(ξ1, ξ2), where ξ1, ξ2 denote the space variables, such that

−∇2u = f in a bounded domain Ω ⊂ R
2 ,

u = gD on ∂ΩD, and
∂u

∂n
= gN on ∂ΩN ,

where ∂ΩD ∪ ∂ΩN = ∂Ω , and ∂ΩD ∩ ∂ΩN = ∅ .

For the Galerkin FEM approximation

‖∇(u− u
(n)
h )‖2 = ‖∇(u− uh)‖2 + ‖x− xn‖

2
A .
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1 CG ≡ matrix formulation of the Gauss q.

A, w1 = r0/‖r0‖ ←→ ω(λ),

∫
f(λ) dω(λ)

↑ ↑

Tn, e1 ←→ ω(n)(λ),
n∑

i=1

ω
(n)
i f

(
θ
(n)
i

)

ω(n)(λ) −→ ω(λ)
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Point 2: CG and the convergence bound for CSI
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2 CG as a model reduction matching 2n moments

∫
λ−1 dω(λ) =

n∑

i=1

ω
(n)
i

(
θ
(n)
i

)−1

+ Rn(f)

‖x− x0‖
2
A

‖r0‖2
= n-th Gauss quadrature +

‖x− xn‖
2
A

‖r0‖2

With x0 = 0, b∗A−1b =
n−1∑

j=0

γj‖rj‖
2 + r∗nA−1rn .

Hesteness and Stiefel, Vorobyev, Golub, Meurant, Brezinski, Reichel,
Boley, Gutknecht, Saylor, Smolarski, ......... , Meurant and S (2006), Golub
and Meurant (2010), S and Tichý (2011),

Liesen, S, Krylov subspace methods, OUP (2012)
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2 A linear bound for the nonlinear method

‖x− xn‖A = { ‖x− x0‖A − ‖r0‖
2 n-th Gauss quadrature }

1

2 .

Using the shifted Chebyshev polynomials on the interval [λ1, λN ] ,

‖x− xn‖A ≤ ‖x− xCSI
n ‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)n

‖x− x0‖A .

This widely used bound does NOT describe, apart from very special
cases, the convergence behaviour of CG.
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2 Minimization property and the bound

● Markov (1890)
● Flanders and Shortley (1950)
● Lanczos (1953), Kincaid (1947), Young (1954, ... )
● Stiefel (1958), Rutishauser (1959)
● Meinardus (1963), Kaniel (1966)
● Daniel (1967a, 1967b)
● Luenberger (1969)

The bound is relevant to the Chebyshev method.
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2 Composite bounds with s large outliers

The following statement reappears in literature (1977, ... , 2009, 2011, ... )

Theorem

Consider the desired accuracy ǫ . Then

k = s +

⌈
ln(2/ǫ)

2

√
κs(A)

⌉
, κs(A) ≡

λN−s

λ1

CG steps will produce the approximate solution xn satisfying

‖x− xn‖A ≤ ǫ ‖x− x0‖A .
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2 Liesen, S (2012); Gergelits, S (2012)
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Finite precision arithmetic computations, inexact Krylov spce methods?
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Point 3: Clusters = fast convergence ?
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Point 3: HPD problem and CG

● in exact arithmetic, CG applied to a matrix with the spectrum consisting
of t tight clusters of eigenvalues does not find, in general, a
reasonably close approximation to the solution within t steps.

● Finite precision arithmetic CG computation can be viewed as exact CG
applied to a larger matrix with the individual original eigenvalues
replaced by tight clusters.

● Finite precision arithmetic CG computation with a matrix having t
isolated well separated eigenvalues may require for reaching a
reasonable approximate solution a significantly larger number of steps
than t .
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3 Any GMRES convergence with any spectrum

Theorem

1◦ The spectrum of A is {λ1, . . . , λN} and GMRES(A, b) yields residuals
with the prescribed nonincreasing sequence

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rN−1‖ > ‖rN‖ = 0 .

2◦ Matrix A is of the form A = WRCR−1W ∗ and b = Wh where C is
the spectral companion matrix, W is unitary and R a nonsingular upper
triangular matrix such that Rs = h.

Complete parametrization. Set of measure zero?

Greenbaum, Ptak, Arioli and S (1994 - 98); Eirmann and Ernst (2001);
Meurant (2012); Meurant and Duintjer Tebbens (2012); Meurant,
Duintjer Tebbens and S (2012); .....
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3 Claims based only on the spectrum

The bounds Const Fn(sp(A), N) do not intersect the rectangle
(1, 0)− (1, N)− (0, N)− (0, 0) .
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3 Functional analytic point of view

● “... useful insight is gained as to the relationship between Hilbert space
and matrix condition numbers and translating Hilbert space fixed point
iterations into matrix computations provides new ways of motivating and
explaining some classic iteration schemes.” Kirby, SIREV, 2010

● “... in the early sweeps the convergence is very rapid but slows down,
this is the sublinear behavior. The convergence then settles down to a
roughly constant linear rate ... Towards the end new speed may be
picked up again, corresponding to the superlinear behavior. ...
In practice all phases need not be identifiable, nor need they appear
only once and in this order.” Nevanlinna, 1993, Section 1.8

● “However, if the operator has a few eigenvalues far away from the rest
of the spectrum, then the estimate is not sharp. In fact, a few ‘bad
eigenvalues’ will have almost no effect on the asymptotic convergence
of the method ...” Mardal and Winther, NLAA, 2011
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3 An example

Consider a fixed point iteration in the Banach space with the bounded
operator B ,

u = B u + f , u(ℓ+1) = B u(ℓ) + f .

Using polynomial acceleration we can do better,

u− u(ℓ) = pℓ(B) (u− u(0)) .

Separating the operator polynomial from the initial error, it seems natural
to minimize the appropriate norm of the operator polynomial

‖pℓ(B)‖ subject to pℓ(0) = 0 .
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3 An example continues

Consider now a numerical (finite dimensional) approximation Bh of the
bounded operator B . Then

p(B) − p(Bh) =
1

2πι

∫

Γ

p(λ) [(λI − B)−1 − (λI − Bh)−1] dλ .

This is considered a sufficient argument why to study algebraic iterations
directly in abstract (infinite dimensional) Banach spaces.

At this level of abstraction, many challenges which one must deal with in
studying finite computational processes at finite dimensional spaces are
simply not visible. Abstract Banach space settings make things certainly
easier (it does not see the trouble). It, however, does not answer the
question about the cost of the algebraic computations (and therefore also
about the cost of the whole solution process).
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3 A way to get together

● Assumptions used in derivations of the statements should be strictly
respected when the statements are further used.

● Statements should be interpreted more rigorously.

● Questions challenging common views may inspire further progress.
One should be open to consider them.

Computation is performed within the finite dimensional algebraic setting.
Analysis of the finite dimensional algebraic problem can not be done on
the model problem level using functional analysis in infinite dimensional
Banach or Hilbert spaces. Such approaches do not see discretisation and
computation in an adequate way. On the other hand, analysis of the finite
dimensional algebraic problem must “do justice” to the original
(non-algebraic) problem as much as possible.
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Point 4: Algebraic error in numerical PDEs
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4 Verification and validation

Knupp and Salari, 2003:

“There may be incomplete iterative convergence (IICE) or round-off-error
that is polluting the results. If the code uses an iterative solver, then one
must be sure that the iterative stopping criteria is sufficiently tight so that
the numerical and discrete solutions are close to one another. Usually in
order-verification tests, one sets the iterative stopping criterion to just
above the level of machine precision to circumvent this possibility.”

In solving tough problems this can not be afforded.

How to measure the algebraic error ?
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4 Local discretisation and global computation

Discrete (piecewise polynomial) solution uh =
∑N

j=1 ζj ϕj .

● If ζj is known exactly, then the global information is approximated as
the (exact) linear combination of the local basis functions.

● Apart from trivial cases, ζj , j = 1, 2, ... , that supply the global
information, are not known exactly. Then

u− u
(n)
h︸ ︷︷ ︸

total error

= u− uh︸ ︷︷ ︸
discretisation error

+ uh − u
(n)
h︸ ︷︷ ︸

algebraic error

.
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4 Local discretisation
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4 Global energy norm of the error

Theorem

Up to a small inaccuracy proportional to machine precision,

‖∇(u− u
(n)
h )‖2 = ‖∇(u− uh)‖2 + ‖∇(uh − u

(n)
h )‖2

= ‖∇(u− uh)‖2 + ‖x− xn‖
2
A .

Question: What is the distribution of the algebraic error
in the functional space ?
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4 A simple model boundary value problem
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4 Algebraic and total errors
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4 Algebraic and total errors
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4 1D analogy, Papež and S (2012)
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4 Why? Moment matching.
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Krylov subspace methods represent matching moments model reduction!
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4 Backward error challenge

We need fully computable a-posteriori error bounds (no hidden constants)
which are:

● Locally efficient,

● and allow to compare the local contribution of the discretisation error
and the algebraic error to the total error.

Challenges for the algebraic backward error theory:

● We need componentwise relative forward error.

● Functional backward error (perturbation of the bilinear form) modifies
the problem to be solved.

● Projecting the backward error into the FEM basis makes the basis
functions non-local.
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4 Loss of locality

Consider the transformation of the FEM basis functions Φ = [ϕ1, . . . , ϕn]
(in the model problem the continuous piecewise linear hat functions)
to the basis Φ̂ = [ϕ̂1, . . . , ϕ̂n] represented by a square matrix
D ∈ R

n×n , D = [Dℓj],

ϕ̂j = ϕj +
n∑

ℓ=1

Dℓj ϕℓ , j = 1, . . . , n .

or, in the compact form

Φ̂ = Φ (I + D) ,

where D accounts for the numerical errors in solving the discretised
finite dimensional algebraic problem.

Gratton, Jiránek and Vasseur (2012); Papež, S (2012)
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4 Loss of locality - meaning of D

We look for D such that the Galerkin solution

uh = Φx , Ax = b

of the discretised problem

a(uh, ϕi) = ℓ(ϕi), i = 1, . . . , n

can be expressed as the exact solution

uh = Φ(I + D)x̂ , Âx̂ = b

of the same infinite dimensional problem discretised via the transformed
basis functions Φ(I + D) and the original test functions ϕi, i = 1, . . . , n .
Here the algebraic vector x̂ which approximates x solves exactly the
algebraic system determined by the Petrov-Galerkin discretisation of the
infinite dimensional problem.
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4 Loss of locality - determining D

Using the algebraic backward error we immediately get that the given
approximate solution x̂ of Ax = b solves exactly the perturbed
algebraic system

(A + E) x̂ = b

where

E =
(b−Ax̂)x̂T

‖x̂‖2
.

Finally, setting

E = AD i.e. D = A
−1

E

finishes the result.
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4 Loss of locality
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Conclusions

Patrick J. Roache’s book Validation and Verification in Computational
Science, 1998, p. 387:

“With the often noted tremendous increases in computer speed and
memory, and with the less often acknowledged but equally powerful
increases in algorithmic accuracy and efficiency, a natural question
suggest itself. What are we doing with the new computer power? with
the new GUI and other set-up advances? with the new algorithms?
What should we do? ... Get the right answer.”

This can not be done without considering modelling, discretisation,
analysis and computation tightly coupled parts of
a single solution process.
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Thank you for your kind patience
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