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Abstract. Elastic solids with strain-limiting response to external loading represent an inter-

esting class of material models, capable of describing stress concentration at strains with small

magnitude. A theoretical justification of this class of models comes naturally from implicit
constitutive theory. We investigate mathematical properties of static deformations for such

strain-limiting nonlinear models. Focusing on the spatially periodic setting, we obtain results

concerning existence, uniqueness and regularity of weak solutions, and existence of renormal-
ized solutions for the full range of the positive scalar parameter featuring in the model. These

solutions are constructed via a Fourier spectral method. We formulate a sufficient condition
for ensuring that a renormalized solution is in fact a weak solution, and we comment on the

extension of the analysis to non-periodic boundary-value problems.

1. Introduction

The recently developed implicit constitutive theory (see [10], [11]) expands quite considerably
the possibilities for describing nonlinear responses of materials, even though the quantities involved
in implicit constitutive models are the same as in classical linear models, which bear the names
of Hooke, Lamé, Navier, Stokes, Darcy, and others. Another significant feature of the implicit
constitutive theory is that it provides a firm theoretical foundation for various models in fluid and
solid mechanics that were proposed by engineers, physicists and chemists in an ad hoc manner.

Concerning solids, that are the subject of this study, one of the main achievements of implicit
constitutive theory is in providing a theoretical background and justification for nonlinear models
involving the linearized strain. In particular, it is thus possible to have models in which the
linearized strain is in all circumstances a bounded function, even when the stress is very large.
This class of implicit constitutive models, developed by Rajagopal in [11], and which are referred
to as limiting strain models, has the potential to be useful in describing the behavior of brittle
materials near crack tips or notches, or concentrated loads inside the body or on its boundary.
Both of these effects lead to stress concentration even though the gradient of the displacement
is small. It is these limiting linearized strain models1 that are the subject of the present study,
which is focused on the mathematical analysis of the existence and uniqueness of solutions to
boundary-value problems in these models.

Limiting strain models have been thus far studied in several situations. Firstly, in the case of
special deformations such as shearing, compressions, torsion, etc., Rajagopal himself, and Bus-
tamante and Rajagopal aimed to assess whether the models exhibit the expected responses (cf.
[2], [14], [13]). Secondly, in the case of anti-plane strain (stress) problems, considered in domains
with nonconvex cross-sections (including thus the domains with V-notches or cracks), the resulting
scalar problem in two space dimensions has been analyzed by methods of asymptotic analysis in
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1Models with limiting finite strain are found to be useful in modeling the response of various soft tissues that

exhibit the phenomenon of finite extensibility. Also, Rajagopal’s elastic models stemming from implicit constitutive
theory seem to provide good description of Fung’s experimental data concerning the passive response of biological
tissues that indicate that the stress/strain response of the tissue is, to a good approximation, exponential. Referring

to Fung’s experimental results, Freed in his book [4] states: “Hooke’s law is applicable for infinitesimal strains.
Fung’s law is applicable for moderate strains. The implicit theory of elasticity, or Rajagopal’s elasticity, is appli-

cable at finite strains.” We refer also to [5] for another important application of elastic models based on implicit

constitutive theory.
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[17], by performing systematic computational tests in [8], and by analytical methods from the
theory of nonlinear partial differential equations in [1]; the last result establishes the existence of
weak solutions in nonconvex domains for values of the model parameter r in the range r ∈ (0, 2),
see equation (4) below, and in convex domains for the range r ∈ (0,∞). Thirdly, a detailed
computational study of the complete problem in planar domains was performed in Ortiz et al. [9].

The present work is the first one with focus on the mathematical analysis of general boundary-
value problems (which include systems of 1

2d(d+3) time-independent nonlinear partial differential

equations of first order), featuring in limiting strain models, in bounded subsets of Rd, d ≥ 2.

2. Formulation of the problem, simplifications and main results

Let Ω ⊂ Rd denote the set occupied by an elastic body being at a static state achieved as
a result of the action of body forces f : Ω → Rd and traction forces g : ΓN → Rd whereas we
assume that the boundary ∂Ω of the set Ω consists of two parts, ΓN and ΓD, and the displacement
u : Ω→ Rd is given on ΓD. Assuming that the response of the body is described by a constitutive
equation relating the Cauchy stress tensor T : Ω→ Rd×dsym and the deformation gradient2 through
the Galilean invariant Cauchy–Green deformation tensor B implicitly (see [10], [11], [12]), then
we arrive at the following problem: find u and T such that

−divT = f, G(T,B) = 0 in Ω,

Tn = g on ΓN ,

u = 0 on ΓD,

(1)

where G : Rd×dsym × Rd×dsym → Rd×dsym is given and n stands for the outer unit normal vector to the
boundary of Ω. One should consider only those relations G(T,B) = 0 that are thermodynamically
consistent, which means that the relations G(T,B) = 0 should automatically guarantee that there
is no dissipation of energy associated with the class of materials considered and the responses con-
sidered are elastic. This compatibility of the model with the laws of thermodynamics is addressed
in [15] and [16].

Problem (1) includes as a special case models described by explicit relations of the form

B = H(T ).

If the material is isotropic, then a representation theorem leads to an expression of the form

B = α0I + α1T + α2T
2,

where αi, i = 0, 1, 2, are functions of the invariants of T , i.e., αi = αi(trT, trT
2, trT 3).

If we assume that the displacement gradient is small in the sense that supx∈Ω |∇u(x)| � 1, and
if we set α2 = 0, we obtain

ε = α0I + α1T with ε = ε(u) =
1

2
(∇u+ (∇u)T ).

Within this framework Rajagopal proposed (see [14], [13]) several limiting strain models that can
be described by the relation

(2) ε = α0(tr T, tr T 2)I +
T

µ0(1 + (tr T 2)r/2)1/r)
= α0(tr T, tr T 2)I +

T

µ0(1 + |T |r)1/r)
,

which we aim to analyze. The parameter µ0 is a positive constant.

In this study, we make several simplifications, which we shall now specify. We shall also explain
our reasons for doing so.

Firstly, we neglect the spherical part of the Cauchy stress and we deal only with one operator
that encodes the key mathematical difficulties. Neglecting the spherical part of the Cauchy stress

2Since we are studying a simplified problem throughout the whole paper, we restrict ourselves to introducing
only those concepts that we need. Let X 7→ χ(X ) =: x represent the motion of the body assigned to a typical point

X in the reference configuration whose current position is x. We then define the displacement vector u := x−X , the

deformation gradient F := ∂χ
∂X , the (left and right) Cauchy–Green deformation tensors B = FFT and C = FTF ,

and the linearized strain tensor ε = ε(u) = 1
2

(∇u+ (∇u)T ).



ANALYSIS AND APPROXIMATION OF A STRAIN-LIMITING NONLINEAR ELASTIC MODEL 3

helps us to simplify the presentation. We believe that retaining the neglected spherical term will
not alter the mathematical analysis in an essential way.

Secondly, we consider a domain of a special form: namely an axiparallel parallelepiped, with
spatially periodic boundary conditions in the various co-ordinate directions. This essential sim-
plification helps us to introduce not only the concept of weak solution to the problem under
consideration, but also the concept of a renormalized solution. The spatially periodic setting also
helps us to construct the solution via a specific numerical method, namely the Fourier spectral
method. Thus our proof of existence of weak and renormalized solutions to the model is at the
same time a proof of the convergence of the sequence of numerical approximations to the unknown
analytical solution.

Thirdly, in the periodic setting the various bounds that are obtained on the sequence of ap-
proximating solutions are, in a sense, optimal, as there are no boundary effects, and the analysis
therefore highlights the ideal objective that one should aim for in the case of other (mixed)
boundary-value problems in general domains. We shall state some of the relevant open problems
and conjectures concerning the extension of the present analysis to such nonperiodic boundary-
value problems at the end of the paper.

These simplifications also allow us to provide a fairly complete picture regarding the existence
and uniqueness of solutions for a nontrivial example of a strain-limiting nonlinear elastic model.

Since standard notations in continuum mechanics and in the theory of partial differential equa-
tions differ and since we are neglecting the spherical part of the Cauchy stress T , we make the
following two changes to our notation: henceforth we shall write

S instead of T and D(u) instead of ε = ε(u).

We also set µ0 = 1.

The problem under consideration here is thus the following: suppose that Ω = (0, 2π)d, with
d ≥ 2, r > 0 is a parameter in the model, and f is a given d-component vector-function (the
load-vector), which is 2π-periodic in each of the d co-ordinate directions. The objective is to show
the existence of a unique pair (S, u), where S is the stress tensor and u is the displacement, which
belong to suitable function spaces consisting of d × d matrix functions and d-component vector
functions, respectively, that are 2π-periodic in each co-ordinate direction, such that

(3) −divS = f

and

(4) D(u) = S(1 + |S|r)− 1
r .

In terms of the parameter r featuring in the model the main results of the paper are the following:

(a) for r ∈
(
0, 2

d

)
, we prove the existence of a unique weak solution to the problem;

(b) for r ∈
[

2
d ,∞

)
, we prove the existence of a renormalized solution to the problem and

specify the conditions on the regularity of the stress tensor S that suffice in order to
deduce that the renormalized solution is in fact a weak solution.

We note that despite its geometrical simplicity, one can still use the framework presented here to
study the effects of concentrated loads that are active in the neighborhood of the center point of
the periodic cell, assuming that the side-lengths of the cell are large enough so that the effects of
concentrations are not effective in the neighbourhood of the boundary of the cell.

The paper is structured as follows. In Section 3 we define the sequence {(SN , uN )}N≥1 of
approximating solutions, which our subsequent weak compactness argument will be based upon,
and we show the existence and uniqueness of the approximating solution for given f and r > 0.
In Section 4 we prove appropriate bounds on SN and uN , which then permit us to extract a
subsequence from the sequence {(SN , uN )}N≥1 that converges to a limiting object (S, u), which is
then identified as a weak solution to the problem under consideration. Having done so, we show
that the weak solution is unique. The analysis in Section 4 relies on certain uniform bounds (with
respect to N) on SN and uN , which are only valid for r ∈

(
0, 2

d

)
. In order to show the existence of
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solutions for r ∈
[

2
d ,∞

)
, we shall introduce in Section 5 the notion of renormalized solution to the

problem and will prove the existence of a renormalized solution for all r ∈
[

2
d ,∞

)
. As was already

noted above, we shall also clarify the conditions on the regularity of the stress tensor S that suffice
to ensure that the renormalized solution is in fact a weak solution. In the Conclusion, we relate the
results achieved in the spatially periodic setting to possible results and open problems regarding
the analysis of the more general problem (1). The paper closes with an Appendix, which contains
the proofs of various Korn-type inequalities in periodic Lebesgue spaces, that we were unable to
find in the literature and have therefore decided to include for the sake of completeness.

3. Definition of the approximation: existence and uniqueness of solutions

Consider the domain Ω := (0, 2π)d in Rd, d ≥ 2. All function spaces consisting of real-valued
2π-periodic functions (by which we mean 2π-periodic in each of the d co-ordinate directions) will
be labelled with the subscript #; subspaces of these, consisting of 2π-periodic functions whose
integral over Ω is equal to 0, will be labelled with the subscript ∗; in order to avoid notational
clutter we shall not use the symbols # and ∗ in the various norm signs. It will be clear from
the argument of the norm which of the symbols # or ∗ is intended. For example, Lp#(Ω) will

denote the Lebesgue space of all real-valued 2π-periodic functions v such that |v|p is integrable
of Ω, equipped with the norm ‖ · ‖Lp(Ω). It is understood that the usual modification is made
when p =∞. Spaces of d-component vector functions, where each component belongs to a certain
function space X, will be denoted by [X]d, while spaces of d× d component matrix functions each
of whose components is an element of X will be signified by [X]d×d. Letting C∞# (Ω) denote the

linear space consisting of the restriction to Ω of all real-valued 2π-periodic C∞ functions defined
on Rd, we note that C∞# (Ω) is dense in Lp#(Ω) for all p ∈ [1,∞); analogously, C∞∗ (Ω) is dense in

Lp∗(Ω) for 1 ≤ p < ∞. The Sobolev space W 1,p
# (Ω), 1 ≤ p < ∞, will be defined as the closure of

C∞∗ (Ω) in the Sobolev norm ‖ · ‖W 1,p(Ω), where

‖v‖W 1,p(Ω) :=
(
‖v‖pLp(Ω) + ‖∇v‖pLp(Ω)

) 1
p

;

here, ‖∇v‖Lp(Ω) := ‖|∇v|‖Lp(Ω), where |∇v| denotes the Euclidean norm of ∇v. Analogously,

W 1,p
∗ (Ω), 1 ≤ p <∞, will be defined as the closure of C∞∗ (Ω) in the Sobolev norm ‖ · ‖W 1,p(Ω). In

the case of a d-component vector-valued function v, the definition of the norm ‖v‖W 1,p(Ω) is the
same as above, except that ‖v‖Lp(Ω) := ‖|v|‖Lp(Ω), with | · | again signifying the Euclidean norm,
while ‖∇v‖Lp(Ω) := ‖|∇v|‖Lp(Ω), where now |∇v| denotes the Frobenius norm of the d× d matrix

∇v. We recall that the Frobenius norm on Rd×d is defined by |X|2 := X : X = tr(XTX).
We further define

H#(div; Ω) := {v ∈ [L2
#(Ω)]d : such that div v ∈ L2

#(Ω)},

equipped with the norm

‖v‖H(div;Ω) :=
(
‖v‖2L2(Ω) + ‖div v‖2L2(Ω)

) 1
2

.

Let

ΣN ⊂ H#,symm(div; Ω) := {S ∈ [L2
#(Ω)]d×d : S = ST, divS ∈ [L2

#(Ω)]d},
equipped with norm

‖S‖H(div;Ω) :=
(
‖S‖2L2(Ω) + ‖divS‖2L2(Ω)

) 1
2

,

and

VN ⊂ [W 1,2
∗ (Ω)]d :=

{
v ∈ [W 1,2

# (Ω)]d :

∫
Ω

v(x) dx = 0

}
be a pair of finite-dimensional spaces consisting of, respectively, Rd×d-valued and Rd-valued func-
tions, whose components are 2π-periodic real-valued trigonometric polynomials of degree N ,
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N ≥ 1, in each of the d-coordinate directions. The pair of spaces (ΣN , VN ) satisfies the fol-
lowing inf-sup condition: let b(v, T ) := −(v,div T ); then, there exists a positive constant cinf-sup,
independent of N , such that

(5) inf
vN∈VN\{0}

sup
TN∈ΣN\{0}

b(vN , TN )

‖vN‖L2(Ω)‖TN‖H(div;Ω)
≥ cinf-sup.

For a short proof of (5) we refer to the Appendix at the end of the paper, where it is also shown
that cinf-sup ≥ 1/3.

Assume further that r > 0 and define

F (X) := X(1 + |X|r)−1/r, X ∈ Rd×d,

where, again, | · | denotes the Frobenius norm on Rd×d.
Suppose that f ∈ [W 1,t

∗ (Ω)]d := {g ∈ [W 1,t
# (Ω)]d :

∫
Ω
g(x) dx = 0}, for some t > 1. We consider

the following discrete problem: find (SN , uN ) ∈ ΣN × VN such that

−(divSN , vN ) = (f, vN ) ∀ vN ∈ VN ,(6)

D̂N := F (SN ),(7)

(D(uN ), TN ) = (D̂N , TN ) ∀TN ∈ ΣN .(8)

Lemma 1. For any y ≥ 0 and r > 0, we have that

min(1, 2−1+1/r) (1 + y) ≤ (1 + yr)1/r ≤ max(1, 2−1+1/r) (1 + y).

Proof. Consider the function y ∈ [0,∞) 7→ g(y) := (1 + yr)1/r/(1 + y) ∈ (0,∞). Note that
g ∈ C([0,∞)) ∩ C∞((0,∞)), g(0) = 1, limy→∞ g(y) = 1, and

g′(y) =
(1 + yr)−1+1/r

(1 + y)2
(yr−1 − 1).

Thus g has a unique stationary point in the interval (0,∞), at y = 1. As

g(1) = 2−1+1/r

{
≥ 1 if 0 < r ≤ 1,
≤ 1 if r ≥ 1,

we deduce that maxy∈[0,∞) g(y) = g(1) if 0 < r ≤ 1 and maxy∈[0,∞) g(y) = g(0) if r ≥ 1. Hence
the desired upper bound. Similarly, miny∈[0,∞) g(y) = min{g(0), g(1)}. �

Lemma 2. Let r > 0, and consider the mapping

X ∈ Rd×d 7→ F (X) := X(1 + |X|r)−1/r ∈ Rd×d.

Then, for each A,B ∈ Rd×d, we have that

|F (A)− F (B)| ≤ 2|A−B|,
and

(F (A)− F (B)) : (A−B) ≥ min(1, 2r−1/r) |A−B|2 (1 + |A|+ |B|)−r−1.

Proof. We begin by observing that

F (A)− F (B) =

∫ 1

0

d

dθ
F (θA+ (1− θ)B) dθ

=

∫ 1

0

d

dθ

[(
θA+ (1− θ)B

)
(1 + |θA+ (1− θ)B|r)−1/r

]
dθ.

Thanks to the definition of the matrix norm | · |, we have that

d

dθ

[(
θA+ (1− θ)B

)
(1 + |θA+ (1− θ)B|r)−1/r

]
=

A−B
(1 + |θA+ (1− θ)B|r)1/r

− (θA+ (1− θ)B)
|θA+ (1− θ)B|r−1

(1 + |θA+ (1− θ)B|r)1+1/r

(θA+ (1− θ)B) : (A−B)

|θA+ (1− θ)B|
.
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Hence, for any A,B,C ∈ Rd×d, we have that

(F (A)− F (B)) : C =

∫ 1

0

(A−B) : C

(1 + |θA+ (1− θ)B|r)1/r
dθ

−
∫ 1

0

[(θA+ (1− θ)B) : C] [(θA+ (1− θ)B) : (A−B)]
|θA+ (1− θ)B|r−2

(1 + |θA+ (1− θ)B|r)1+1/r
dθ,

and therefore, by applying the Cauchy–Schwarz inequality on the right-hand side,

|F (A)− F (B)| ≤ 2|A−B| ∀A,B ∈ Rd×d.

The proof of the second inequality in the statement of the lemma proceeds similarly:

(F (A)− F (B)) : (A−B) =

∫ 1

0

|A−B|2

(1 + |θA+ (1− θ)B|r)1/r
dθ

−
∫ 1

0

[(θA+ (1− θ)B) : (A−B)]2
|θA+ (1− θ)B|r−2

(1 + |θA+ (1− θ)B|r)1+1/r
dθ,

and by the Cauchy–Schwarz inequality

[(A−B) : (θA+ (1− θ)B)]2 ≤ |A−B|2 |θA+ (1− θ)B|2.

Thus,

(F (A)− F (B)) : (A−B) ≥
∫ 1

0

|A−B|2

(1 + |θA+ (1− θ)B|r)1/r
dθ

−
∫ 1

0

|A−B|2|θA+ (1− θ)B)|2 |θA+ (1− θ)B|r−2

(1 + |θA+ (1− θ)B|r)1+1/r
dθ

= |A−B|2
∫ 1

0

(1 + |θA+ (1− θ)B|r)−1−1/r dθ.

It follows from Lemma 1 that, for any θ ∈ [0, 1] and any A,B ∈ Rd×d,

(1 + |θA+ (1− θ)B|r)1/r ≤ max(1, 2−1+1/r) (1 + |θA+ (1− θ)B|)

≤ max(1, 2−1+1/r) (1 + |A|+ |B|).

Hence

(1 + |θA+ (1− θ)B|r)(r+1)/r ≤ max(1, 21/r−r) (1 + |A|+ |B|)r+1.

Applying this to the integrand, we deduce that

(F (A)− F (B)) : (A−B) ≥ min(1, 2r−1/r) |A−B|2 (1 + |A|+ |B|)−r−1,

which is the second inequality in the statement of the lemma. �

With these preliminary results in place, we are now ready to embark on the proof of existence
and uniqueness of solutions to the discrete problem (6)–(8).

Existence and uniqueness of solutions

Assuming for the moment the existence of a solution (SN , uN ) ∈ ΣN × VN to (6)–(8), we shall
show that the solution must be unique. Suppose otherwise, that there exist (SiN , u

i
N ) ∈ ΣN × VN

that solve (6)–(8) for i = 1, 2. Hence,

−(div (S1
N − S2

N ), vN )− (D(u1
N − u2

N ), TN ) +
(
F (S1

N )− F (S2
N ), TN

)
= 0

for all (TN , vN ) ∈ ΣN × VN . We take TN = S1
N − S2

N and vN = u1
N − u2

N , and note that, after
partial integration in the first term,

− (div (S1
N − S2

N ), u1
N − u2

N )− (D(u1
N − u2

N ), S1
N − S2

N )

= (S1
N − S2

N ,∇(u1
N − u2

N ))− (D(u1
N − u2

N ), S1
N − S2

N )

= (S1
N − S2

N , D(u1
N − u2

N ))− (D(u1
N − u2

N ), S1
N − S2

N ) = 0.
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Consequently, (
F (S1

N )− F (S2
N ), S1

N − S2
N

)
= 0.

Lemma 2 then implies that S1
N ≡ S2

N on Ω, and hence D̂1
N ≡ D̂2

N on Ω, which yields that
D(u1

N − u2
N ) ≡ 0 on Ω. By Korn’s inequality (cf. Lemma A.2), we then have that u1

N − u2
N ≡ 0

on Ω, thus completing the proof of uniqueness of the solution to discrete problem (6)–(8).

Next we prove the existence of a solution to (6)–(8). First we choose any ŜN ∈ ΣN such that

−(div ŜN , vN ) = (f, vN ) for all vN ∈ VN , and let SN,0 := SN − ŜN . The existence of such an ŜN
will be shown below; for the time being, we shall proceed by taking the existence of such an ŜN
for granted. Clearly, −(divSN,0, vN ) = 0 for all vN ∈ VN , which then motivates us to define

ΣN,0 := {TN ∈ ΣN : −(divTN , vN ) = 0 for all vN ∈ VN}.

As 0 ∈ ΣN,0, the set ΣN,0 is nonempty. Problem (6)–(8) can be therefore restated in the following
equivalent form: find (SN,0, uN ) ∈ ΣN,0 × VN such that

(9) (D(uN ), TN ) =
(
F (SN,0 + ŜN ), TN

)
∀TN ∈ ΣN .

Now, for TN ∈ ΣN,0, (D(vN ), TN ) = (∇vN , TN ) = −(vN ,div TN ) = −(div TN , vN ) = 0 for all
vN ∈ VN . Hence, (9) indicates that we should seek SN,0 ∈ ΣN,0 such that

(10)
(
F (SN,0 + ŜN ), TN

)
= 0 ∀TN ∈ ΣN,0.

Let us consider the nonlinear operator F : ΣN,0 → ΣN,0, defined on the finite-dimensional
Hilbert space ΣN,0, equipped with the inner product and norm of [L2

#(Ω)]d×d, by

F(UN ) := PNF (UN + ŜN ), UN ∈ ΣN,0,

where PN denotes the orthogonal projector in [L2
#(Ω)]d×d onto ΣN,0.

Thanks to the first inequality in the statement of Lemma 2, we then have that

‖F(U1
N )− F(U2

N )‖L2(Ω) ≤ 2‖U1
N − U2

N‖L2(Ω) ∀U1
N , U

2
N ∈ ΣN,0,

and therefore F : ΣN,0 → ΣN,0 is (globally) Lipschitz continuous on ΣN,0.
Note further that

(F(UN ), UN ) =

(
UN + ŜN

(1 + |UN + ŜN |r)1/r
, UN

)
≥ 1

2

∫
Ω

|UN |2 − |ŜN |2

(1 + |UN + ŜN |r)1/r
dx.

Thus, thanks to Lemma 1 and noting that (1 + |UN + ŜN |r)1/r ≥ 1, we have that

(F(UN ), UN ) ≥ 1

2
min(1, 21−1/r)

∫
Ω

|UN |2

1 + |UN |+ |ŜN |
dx− 1

2

∫
Ω

|ŜN |2 dx.

Now,
|UN |2

1 + |UN |+ |ŜN |
≥ |UN |2

(1 + ‖ŜN‖L∞(Ω))(1 + ‖UN‖L∞(Ω))
,

and therefore, by the Nikol’skĭı inequality ‖UN‖L∞(Ω) ≤ CinvN
d/2‖UN‖L2(Ω), we deduce that

(F(UN ), UN ) ≥ 1

2

min(1, 21−1/r)

1 + ‖ŜN‖L∞(Ω)

1

1 + CinvNd/2‖UN‖L2(Ω)

‖UN‖2L2(Ω) −
1

2
‖ŜN‖2L2(Ω).

Thus, for any UN ∈ ΣN,0 such that ‖UN‖L2(Ω) = µ > 0, we have that

(F(UN ), UN ) ≥ 1

2

min(1, 21−1/r)

1 + ‖ŜN‖L∞(Ω)

µ2

1 + CinvNd/2µ
− 1

2
‖ŜN‖2L2(Ω).

For N ≥ 1 fixed (and therefore ‖ŜN‖L∞(Ω) and ‖ŜN‖L2(Ω) also fixed), the expression on the
right-hand side of the last displayed inequality is a continuous function of µ ∈ (0,∞), which

converges to +∞ as µ → +∞; thus, there exists a µ0 = µ0(d, r,N, ‖ŜN‖L∞(Ω), ‖ŜN‖L2(Ω)), such
that (F(UN ), UN ) > 0 for all UN ∈ ΣN,0 satisfying ‖UN‖L2(Ω) = µ, for µ > µ0.
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We shall invoke the following corollary of Brouwer’s fixed point theorem (cf. Girault & Raviart
[7], Corollary 1.1, p.279).

Lemma 3. Let H be a finite-dimensional Hilbert space whose inner product is denoted by (·, ·)H
and the corresponding norm by ‖ · ‖H. Let F be a continuous mapping from H into H with the
following property: there exists a µ > 0 such that (F(v), v)H > 0 for all v ∈ H with ‖v‖H = µ.
Then, there exists an element u ∈ H such that ‖u‖H ≤ µ and F(u) = 0.

By taking H = ΣN,0, equipped with the inner product and norm of [L2
#(Ω)]d×d, we deduce from

Lemma 3 the existence of an SN,0 ∈ ΣN,0 that solves (10), and thus, recalling that SN = SN,0+ŜN ,
we have also shown the existence of an SN ∈ ΣN such that−(divSN , vN ) = (f, vN ) for all vN ∈ VN .

Having shown the existence of SN ∈ ΣN , we return to (9) in order to show the existence of a
uN ∈ VN such that

(D(uN ), TN ) = (F (SN ), TN ) ∀TN ∈ ΣN .

Equivalently, we wish to show the existence of a uN ∈ VN such that

(11) b(uN , TN ) = `(TN ) ∀TN ∈ ΣN ,

where
b(vN , TN ) := −(vN ,divTN ) and `(TN ) := (F (SN ), TN ) .

We note that `(TN ) = 0 for all TN ∈ ΣN,0, i.e., ` ∈ (ΣN,0)0 (the annihilator of ΣN,0).
The existence of a unique uN ∈ VN satisfying (11) then follows, thanks to the inf-sup condition

(5), from the fundamental theorem of the theory of mixed variational problems stated in Lemma
4.1(ii) on p.40 of Girault & Raviart [6].

At the very beginning of our proof of existence of solutions we postulated the existence of an
ŜN ∈ ΣN such that −(div ŜN , vN ) = (f, vN ) for all vN ∈ VN . Part (iii) of Lemma 4.1 on p.40
of Girault & Raviart [6] implies, again thanks to the inf-sup condition (5), the existence of an

ŜN ∈ ΣN such that b(vN , ŜN ) = (f, vN ) for all vN ∈ VN ; i.e., −(div ŜN , vN ) = (f, vN ) for all
vN ∈ VN . Thus we have proved both the existence and the uniqueness of solutions to the discrete
problem (6)–(8).

4. Convergence of the sequence of approximate solutions

It remains to show that the sequence of approximate solutions generated by (6)–(8) converges
in a suitable sense, and that the limiting function is a (weak) solution to the problem under
consideration. We define the function space

D1,∞
∗ (Ω) :=

{
w ∈ [L1

#(Ω)]d : D(w) ∈ [L∞# (Ω)]d×d,

∫
Ω

w(x) dx = 0

}
.

Trivially, VN ⊂ D1,∞
∗ (Ω) for each N ≥ 1. As, by Hölder’s inequality, ‖D(w)‖Lp(Ω) < ∞ for any

w ∈ D1,∞
∗ (Ω) and any p ∈ [1,∞), Korn’s inequality (cf. Lemma A.1) implies that the seminorm

w ∈ D1,∞
∗ (Ω) 7→ ‖D(w)‖L∞(Ω) is in fact a norm on D1,∞

∗ (Ω).

Lemma 4. [C∞∗ (Ω)]d is weak-∗ dense in D1,∞
∗ (Ω) against [L1

#(Ω)]d×d, in the sense that for each

v ∈ D1,∞
∗ (Ω) there exists a sequence {vn}n≥1 ⊂ [C∞∗ (Ω)]d such that∫

Ω

T (x) : D(vn(x)) dx
n→∞→

∫
Ω

T (x) : D(v(x)) dx ∀T ∈ [L1
#(Ω)]d×d.

Proof. Let v ∈ [L1
∗(Ω)]d. The function v then has the Fourier series expansion

v(x) =
∑

k∈Zd\{0}

v̂(k) eik·x, where v̂(k) :=
1

(2π)d

∫
Ω

v(x) e−ik·x dx.

Let r := (r1, . . . , rd) with 0 < rj < 1 for j = 1, . . . , d, and, for a multi-index m ∈ Zd, define

r|m| := rm1
1 · · · rmdd . We consider the Poisson kernel :

Pr(x) :=
∑
m∈Zd

r|m| eım·x =

d∏
j=1

1− r2
j

1− 2rj cosxj + r2
j

, x ∈ Ω,
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and, given any v ∈ D1,∞
∗ (Ω), we define the Poisson integral of v as Pr ∗ v. We then take

vn(x) := Prn ∗ v, with rn := (1− 1
n , . . . , 1−

1
n ) and x ∈ Ω,

(so that rn → (1, . . . , 1) as n → ∞), with the convolution ∗ understood in the sense that each of
the d components of v is individually convolved with Prn . For each fixed n ≥ 1, vn ∈ [C∞# (Ω)]d.

By the convolution theorem v̂n(k) = (2π)d P̂rn(k) v̂(k) for all k ∈ Zd, and therefore, as 0 =∫
Ω
v(x) dx = (2π)d v̂(0), also v̂n(0) = 0, meaning that

∫
Ω
vn(x) dx = 0; i.e., {vn}n≥1 ⊂ [C∞∗ (Ω)]d.

Furthermore, by properties of the convolution, D(vn) = D(Prn ∗ v) = Prn ∗D(v). Note also that
Prn(x) = Prn(−x) for all x ∈ Ω and each n = 1, 2 . . . . Thus we have that∣∣∣∣∫

Ω

T (x) : [Prn(x) ∗D(v(x))] dx−
∫

Ω

T (x) : D(v(x)) dx

∣∣∣∣
=

∣∣∣∣∫
Ω

[Prn(x) ∗ T (x)− T (x)] : D(v(x)) dx

∣∣∣∣ ≤ ‖Prn ∗ T − T‖L1(Ω) ‖D(v)‖L∞(Ω).

By Corollary 2.15 to Theorem 2.11 pp. 256 and 253, respectively, of Stein & Weiss [19], we have
that ‖Prn ∗ T − T‖L1(Ω) → 0 as n→∞. Hence,∫

Ω

T (x) : D(vn(x)) dx =

∫
Ω

T (x) : [Prn(x) ∗D(v(x))] dx

n→∞→
∫

Ω

T (x) : D(v(x)) dx ∀T ∈ [L1
#(Ω)]d×d.

That completes the proof. �

Theorem 1. Suppose that f ∈ [W 1,t
∗ (Ω)]d for some t > 1; then, there exists a unique pair

(S, u) ∈ [L1
#(Ω)]d×d ×D1,∞

∗ (Ω), such that

(S,D(v)) = (f, v) ∀ v ∈ D1,∞
∗ (Ω),

and

D(u) = F (S) = S(1 + |S|r)− 1
r with

{
r ∈ (0, 1] if d = 2,
r ∈ (0, 2/d) if d > 2.

Furthermore, the sequence of (uniquely defined) solution pairs (SN , uN ) ∈ ΣN × VN , N ≥ 1,
generated by (6)–(8), converges to (S, u) in the following sense:

(a) The sequence {uN}N≥1 converges to u strongly in [Lp#(Ω)]d and weakly in [W 1,p
# (Ω)]d for

all p ∈ [1,∞);
(b) The sequence {D(uN )}N≥1 converges to D(u) weakly in [Lp#(Ω)]d×d for all p ∈ [1,∞);

(c) The sequence {SN}N≥1 converges to S strongly in [Ls#(Ω)]d×d for all values of s in the

range [1, d(1− r)/(d− 2)) for r ∈ (0, 2/d) when d > 2, and for all values of s ∈ [1,∞) if
r ∈ (0, 1] and d = 2;

(d) The sequence {D(uN )}N≥1 converges to D(u) weakly in [W 1,2
# (Ω)]d×d, and therefore also

strongly in [Lp(Ω)]d×d for all p ∈ [1, 2d/(d− 2)), d ≥ 2;
(e) If r ∈ (0, 1/(d − 1)), d ≥ 2, then the sequence {SN}N≥1 converges to S weakly in

[W 1,θ
# (Ω)]d×d for all θ ∈ [1, d(1− r)/(d− r − 1)).

Proof. The proof consists of two parts. First we shall prove existence of solutions; having done
so, we shall proceed to prove uniqueness of the solution.

Existence of solutions. We begin by noting that, thanks to the definition of D̂N , we immediately
have that, for all N ≥ 1,

(12) ‖D̂N‖L∞(Ω) ≤ 1.

Consequently, denoting by PN the [L2
#(Ω)]d×d orthogonal projector onto ΣN , we also have that,

for all N ≥ 1,

‖D(uN )‖Lp(Ω) = ‖PN D̂N‖Lp(Ω) ≤ C0, p ∈ (1,∞),
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thanks to the stability of the [L2
#(Ω)]d×d orthogonal projector in the [Lp#(Ω)]d×d norm (cf. Canuto,

Hussaini, Quarteroni, Zang [3], ineq. (5.1.14) on p.271), where C0 = C0(p) signifies a generic
positive constant, independent of N , whose value may change from one occurrence to another.
Thus, by Lemma A.1, also ‖uN‖Lp(Ω) ≤ C0 for all N ≥ 1, and any p ∈ (1,∞); as Ω is bounded,
also, ‖uN‖L1(Ω) ≤ C0 for all N ≥ 1.

¿From these bounds, by the compact embedding of W 1,p
∗ (Ω) into C0,α(Ω) with α = 1 − d/p,

for p ∈ (d,∞), we deduce the existence of a function u ∈ [W 1,p
∗ (Ω)]d such that (upon extraction

of a subsequence, which we shall not denote here and henceforth), as N →∞ we have that

uN → u weakly in [W 1,p
∗ (Ω)]d for all p ∈ [1,∞),(13)

uN → u strongly in [C0,α(Ω)]d for all α ∈ (0, 1),(14)

D(uN )→ D(u) weakly in [Lp#(Ω)]d×d for all p ∈ [1,∞),(15)

D̂N → D(u) weakly in [Lp#(Ω)]d×d for all p ∈ [1,∞).(16)

To see that {D(uN )}N≥1 and {D̂N}N≥1 converge weakly in [Lp#(Ω)]d×d to the same limit, denote

their respective weak limits by D(u) (as in (15)) and D̂. We will show that D(u) = D̂, which will
then fully justify the statement (16). Indeed,

(D(u)− D̂, T ) = (D(u)−D(uN ), T ) + (D(uN )− D̂N , T ) + (D̂N − D̂, T ) ∀T ∈ [W 1,p′

# (Ω)]d×d.

The first and third term on the right-hand side tend to 0 as N → ∞ by the definitions of the
respective weak limits, so it remains to show that the second term also tends to 0. Thanks to (8),

for any fixed T ∈ [W 1,p′

# (Ω)]d×d, we have that

(D(uN )− D̂N , T ) = (D(uN )− D̂N , T − TN ) ≤ ‖D(uN )− D̂N‖Lp(Ω) ‖T − TN‖Lp′ (Ω) ∀TN ∈ ΣN ,

and hence, by boundedness in [Lp#(Ω)]d×d of the weakly convergent sequences {D(uN )}N≥1 and

{D̂N}N≥1, we have that

|(D(uN )− D̂N , T )| ≤ C0 inf
TN∈ΣN

‖T − TN‖Lp′ (Ω) ∀T ∈ [W 1,p′

# (Ω)]d×d.

As N → ∞ the right-hand side converges to zero; therefore the same is true of the left-hand

side. This proves that (D(u) − D̂, T ) = 0 for all T ∈ [W 1,p′

# (Ω)]d×d, which by the density of

[W 1,p′

# (Ω)]d×d in [Lp
′

#(Ω)]d×d implies that D(u) = D̂, i.e., that D(uN ) and D̂N converge weakly

in [Lp#(Ω)]d×d to the same limit, D(u) ∈ [Lp#(Ω)]d×d, p ∈ (1,∞); hence, also for p = 1. We note

also that, by (12), {D̂N}N≥1 has a subsequence that converges weak-∗ in [L∞# (Ω)]d×d to some

χ ∈ [L∞# (Ω)]d×d. By uniqueness of the weak limit, however χ = D(u); hence, D(u) ∈ [L∞# (Ω)]d×d;

also,
∫

Ω
u(x) dx = 0. Thus, in view of (14)–(15), we have proved (a) and (b) in the statement of

the theorem, as well as that u ∈ D1,∞
∗ (Ω).

In order to prove (c), we take vN = uN in (6), integrate by parts and note (7); thus,

(f, uN ) = (SN , D(uN )) = (SN , D̂N ) =

∫
Ω

|SN (x)|2

(1 + |SN (x)|r)1/r
dx.

Hence, for all N ≥ 1,∫
Ω

|SN (x)|2

(1 + |SN (x)|r)1/r
dx ≤ ‖f‖Lp′ (Ω)‖uN‖Lp(Ω) ≤ C0,

1

p
+

1

p′
= 1, 1 < p′ ≤ t,

whereby ‖SN‖L1(Ω) ≤ C0. This last statement follows by noting that, on the one hand,∫
{x∈Ω : |SN (x)|≥1}

|SN (x)|dx ≤ 21/r

∫
{x∈Ω : |SN (x)|≥1}

|SN (x)|2

(1 + |SN (x)|r)1/r
dx ≤ C0,
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(where we have used that y/(1 + yr)1/r ≥ 1/2r for all y ≥ 1 thanks to the fact that y ∈ [0,∞) 7→
y/(1+yr)1/r is strictly monotonic increasing), and on the other, by the Cauchy–Schwarz inequality,∫
{x∈Ω : |SN (x)|≤1}

|SN (x)|dx ≤

(∫
{x∈Ω : |SN (x)|≤1}

(1 + |SN (x)|r)1/r dx

)1/2

×

(∫
{x∈Ω : |SN (x)|≤1}

|SN (x)|2

(1 + |SN (x)|r)1/r
dx

)1/2

≤ 21/(2r)|Ω|1/2
(∫
{x∈Ω : |SN (x)|≤1}

|SN (x)|2

(1 + |SN (x)|r)1/r
dx

)1/2

≤ C0,

whereby, upon adding the bounds on the integrals over the sets {x ∈ Ω : |SN (x)| ≥ 1} and
{x ∈ Ω : |SN (x)| ≤ 1}, we have that, for all N ≥ 1,

(17) ‖SN‖L1(Ω) ≤ C0 .

We need bounds on SN in stronger norms in order to be able to pass to the limit as N → ∞.
To this end, we take vN = −divD(uN ) in (6); note that such a vN belongs to VN and is therefore
a legitimate choice of test function in (6). After performing integrations by parts on both the
left-hand side and the right-hand side we deduce that, for all N ≥ 1,

(∇SN ,∇D(uN )) = (∇f,D(uN )).

Note further that

(∇SN ,∇D(uN )) = −(div (∇SN ), D(uN )) = −(div (∇SN ), D̂N ) = (∇SN ,∇D̂N )

and

(∇f,D(uN )) = (PN (∇f), D(uN )) = (PN (∇f), D̂N ).

We thus have that

(∇SN ,∇D̂N ) = (PN (∇f), D̂N ).

Differentiating the definition of D̂N in (7) and noting that

∇SN : ∇D̂N ≥
|∇SN |2

(1 + |SN |r)1/r
− |SN |r |∇SN |2

(1 + |SN |r)1+1/r
=

|∇SN |2

(1 + |SN |r)1+1/r
,

we thus have that, for all N ≥ 1,∫
Ω

|∇SN |2

(1 + |SN |r)1+1/r
dx ≤ (PN (∇f), D̂N ) ≤ ‖PN (∇f)‖Lp(Ω)‖D̂N‖Lp′ (Ω)

≤ |Ω|1/p
′
‖PN (∇f)‖Lp(Ω) ≤ cp|Ω|1/p

′
‖∇f‖Lp(Ω) ≤ C0,(18)

where in the penultimate inequality we used the stability of the [L2
#(Ω)]d×d projector PN in the

[Lp#(Ω)]d×d norm, with 1
p + 1

p′ = 1, 1 < p ≤ t.
It follows from Lemma 1 that

(1 + yr)1+1/r ≤ max(1, 21/r−r)(1 + y)r+1, y ≥ 0,

and therefore, assuming that r 6= 1 (which then implies that 0 < r < 2/d for all d ≥ 2),

‖∇(1 + |SN |)
1−r
2 ‖2L2(Ω) ≤

(
1− r

2

)2 ∫
Ω

|∇SN |2

(1 + |SN |)r+1
dx ≤ C0 ∀N ≥ 1.(19)

As 0 < r < 2/d, we have by Sobolev embedding that, for all p such that 2 < p < 2d/(d− 2) and
0 < r < 1− (2/p) < 2/d,

(20)

∫
Ω

|SN |p(1−r)/2 dx ≤
∫

Ω

[
(1 + |SN |)

1−r
2

]p
dx = ‖(1 + |SN |)

1−r
2 ‖pLp(Ω) ≤ C0 ∀N ≥ 1,

and the sequence {SN}N≥1 is therefore bounded in [L
p(1−r)/2
# (Ω)]d×d, with p(1− r)/2 > 1. Thus

we can extract a subsequence, which is weakly convergent in [L
p(1−r)/2
# (Ω)]d×d; we denote the
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corresponding weak limit by S; S ∈ [L
p(1−r)/2
# (Ω)]d×d. As p approaches 2d/(d − 2) from below,

1 − (2/p) approaches 2/d from below; thus, for any r such that 0 < r < 2/d, p can be chosen to
be arbitrarily close to 2d/(d− 2); hence,

(21) SN
N→∞→ S weakly in [Ls#(Ω)]d×d for all s such that 1 ≤ s < d(1−r)

d−2 ,

{
d ≥ 2,
0 < r < 2/d.

For 0 < r < 2/d, we have that 1 < d(1−r)/(d−2), and the range of such s is therefore a nonempty
half-open interval.

We return to the case of r = 1, which was excluded in the argument above; this particular case
is only of interest when d = 2 as it corresponds to the upper limit r = 2/d = 1 in the range of
admissible values for r. To this end, we take r = 1 in (18) to deduce that

‖∇ log(1 + |SN |)‖2L2(Ω) ≤ C0 ∀N ≥ 1.

By the continuous embedding of W 1,2
# (Ω) (for d = 2) into the Orlicz space LΨ

#(Ω), with Ψ(t) =

et
2 − 1 (as expressed by the Trudinger–Donaldson inequality, for example,) we deduce that, for

some constant γ > 0 (independent of N),∫
Ω

eγ[log(1+|SN |)]2 dx ≤ C0 ∀N ≥ 1,

and therefore {SN}N≥1 is bounded in Ls#(Ω) for any s ∈ [1,∞). Upon extraction of a subsequence,

we have weak convergence of {SN}N≥1 in [Ls#(Ω)]d×d for all s ∈ (1,∞), and therefore also for

s = 1. In other words, the following modification of (21) holds:

(22) SN
N→∞→ S weakly in [Ls#(Ω)]d×d for all s such that 1 ≤ s <∞, d = 2, r = 1.

We postpone the proof of strong convergence of the sequence {SN}N≥1 until after we have
shown that the pair of functions (S, u) thus identified by the limiting procedure is a weak solution
of the problem under consideration; in particular, we now shall show that (S,D(v)) = (f, v) for all

v ∈ D1,∞
∗ (Ω), that F (S) = D(u), and that {F (SN )}N≥1 converges to F (S) weak-∗ in [L∞# (Ω)]d×d.

The argument is based on Minty’s method.
Let S denote the weak limit in [L1

#(Ω)]N×N of the sequence {SN}N≥1. Hence, for any v ∈
[C∞∗ (Ω)]d and any vN ∈ VN , we have that

|(SN , D(v))− (f, v)| = |(SN , D(v)−D(vN )) + (f, vN − v)|
≤
(
‖SN‖L1(Ω) + ‖f‖L1(Ω)

)
‖v − vN‖W 1,∞(Ω).

Thus, by (17),

|(SN , D(v))− (f, v)| ≤
(
C0 + ‖f‖L1(Ω)

)
inf

vN∈VN
‖v − vN‖W 1,∞(Ω) ∀ v ∈ [C∞∗ (Ω)]d.

By letting N →∞ and noting that the right-hand side converges to 0 we deduce, using the weak
convergence of {SN}N≥1 to S in [L1

#(Ω)]d×d that

(S,D(v)) = (f, v) ∀ v ∈ [C∞∗ (Ω)]d.

Hence, by noting the definition of D1,∞
∗ (Ω) and Lemma 4, we get that

(23) (S,D(v)) = (f, v) ∀ v ∈ D1,∞
∗ (Ω).

It remains to show that D(u) = F (S). We begin by observing that {D̂N}N≥1 = {F (SN )}N≥1

is a bounded sequence in [L∞# (Ω)]d×d. It therefore has a weak-∗ convergent subsequence, still

denoted by {D̂N}N≥1, with limit χ ∈ [L∞# (Ω)]d×d, say. We have already shown in the discussion

following equation (16) that {D(uN )}N≥1 and {D̂N}N≥1 = {F (SN )}N≥1 possess the same weak
limit, D(u); therefore, χ = D(u); i.e.,

(24) F (SN )
N→∞→ D(u) weak-∗ in [L∞# (Ω)]d×d.
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We now will show that D(u) = F (S). Note that, thanks to Lemma 2, and equations (7), (8), (6),
for any T ∈ [L1

#(Ω)]d×d,

0 ≤ (F (SN )− F (T ), SN − T ) = (F (SN ), SN )− (F (SN ), T )− (F (T ), SN − T )

= (D̂N , SN )− (F (SN ), T )− (F (T ), SN − T )

= (D(uN ), SN )− (F (SN ), T )− (F (T ), SN − T )

= (−divSN , uN )− (F (SN ), T )− (F (T ), SN − T )

= (f, uN )− (F (SN ), T )− (F (T ), SN − T )

→ (f, u)− (χ, T )− (F (T ), S − T ) as N →∞.(25)

Thus, by (23) and since χ = D(u), we have that

0 ≤ (S,D(u))− (D(u), T )− (F (T ), S − T ) ∀T ∈ [L1
#(Ω)]d×d.

Equivalently,

(26) 0 ≤ (D(u)− F (T ), S − T ) ∀T ∈ [L1
#(Ω)]d×d.

Now consider any W ∈ [L1
#(Ω)]d×d and take T = S − λW , with λ > 0 in (26). Upon division by

λ,

0 ≤ (D(u)− F (S − λW ),W ) ∀W ∈ [L1
#(Ω)]d×d, ∀λ > 0.

Passing to the limit λ → 0+ (note that λ ∈ [0,∞) ∈ R 7→ (F (S − λW ),W ) ∈ R is a continuous
function for each fixed T and W ), we have that

0 ≤ (D(u)− F (S),W ) ∀W ∈ [L1
#(Ω)]d×d.

Since [L1
#(Ω)]d×d is a linear space, and therefore the last inequality also holds with W replaced

by −W , we have that

(D(u)− F (S),W ) = 0 ∀W ∈ [L1
#(Ω)]d×d.

Thus we have shown that D(u) = F (S), as an equality in [L∞# (Ω)]d×d, i.e., that

(27) F (SN )
N→∞→ F (S) = D(u) weak-∗ in [L∞# (Ω)]d×d.

It remains to prove strong convergence of the sequence {SN}N≥1. Define

EN (x) := (F (SN (x))− F (S(x))) : (SN (x)− SN (x)).

Then, thanks to Lemma 2 and noting that by the triangle inequality |SN | ≤ |SN − S| + |S|, we
obtain the following lower bound on EN :

EN (x) ≥ 2r−
1
r

|SN (x)− S(x)|2

(1 + |SN (x)− S(x)|+ 2|S(x)|)r+1
, a.e. x ∈ Ω.(28)

On the other hand, by taking T = S in (25) and noting the fifth line of (25), we have (because
EN is nonnegative) and by (23) with v = u, that∫

Ω

|EN (x)|dx =

∫
Ω

EN (x) dx = (f, uN )− (F (SN ), S)− (F (S), SN − S)

= (f, uN − u) + (F (S), S − SN ) + (D(u)− F (SN ), S) ∀N ≥ 1.

According to (14), (21) (or (22) if r = 1 and d = 2) and (24) the right-hand side converges to 0 as
N →∞; thus, EN → 0 strongly in L1

#(Ω). Hence we can extract a subsequence, still denoted by

EN , which converges to 0 almost everywhere on Ω. The right-hand side of (28) is a nonnegative,
continuous, strictly monotonic increasing function of |SN (x)− S(x)|, which vanishes if, and only
if, |SN (x)−S(x)| = 0. Therefore, |SN (x)−S(x)| must also converge to 0 almost everywhere on Ω.
In other words, {SN}N≥1 converges to S almost everywhere on Ω. By Vitali’s theorem we deduce
from this, together with (21) (or (22) if r = 1 and d = 2), that {SN}N≥1 converges to S strongly

in [Ls(Ω)]d×d for 1 ≤ s < d(1−r)
d−2 when d > 2, and for 1 ≤ s <∞ when r ∈ (0, 1] and d = 2. That

proves part (c).
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Next we prove part (d). By (7) and (19) (cf. also (18) for the case of r = 1 and d = 2), we
have that∫

Ω

|∇D̂N |2 dx ≤
∫

Ω

[
2|∇SN |

(1 + |SN |r)
1
r

]2

dx = 4

∫
Ω

|∇SN |2

(1 + |SN |)r+1

(1 + |SN |)r+1

(1 + |SN |r)2/r
dx ≤ C0

for all N ≥ 1, since the fraction appearing in the integrand as second factor is bounded by 1 for
all r ∈ (0, 1] by Lemma 1. As, also, ‖D̂N‖L∞(Ω) ≤ 1, we deduce that {D̂N}N≥1 is bounded in

[W 1,2
# (Ω)]d×d. Further, by (8), D(uN ) = PN D̂N ; note also that PN commutes with differentiation

and is stable in the [L2(Ω)]d×d×d norm. Thus we have that

‖∇D(uN )‖L2(Ω) = ‖∇PN D̂N‖L2(Ω) = ‖PN∇D̂N‖L2(Ω) ≤ ‖∇D̂N‖L2(Ω) ≤ C0 ∀N ≥ 1.

As {D(uN )}N≥1 is already known to be bounded in [Lp(Ω)]d×d for all p ∈ [1,∞), (cf. part (a)),

we then have that {D(uN )}N≥1 is bounded in [W 1,2
# (Ω)]d×d, just as {D̂N}N≥1. The statement in

part (d) regarding weak convergence of the sequence {D(uN )}N≥1 in [W 1,2
# (Ω)]d×d then directly

follows.

Finally, we prove part (e), now under the more restrictive hypothesis that 0 < r < 1/(d − 1).
For any θ ∈ (1, 2) (to be fixed later on in the argument) note that, thanks to Hölder’s inequality
(with conjugate exponents 2/θ and 2/(2− θ)) and (19), we have, for any N ≥ 1,∫

Ω

|∇SN |θ dx =

∫
Ω

[
|∇SN |2

(1 + |SN |)r+1

] θ
2

(1 + |SN |)
(r+1)θ

2 dx

≤
[∫

Ω

|∇SN |2

(1 + |SN |)r+1
dx

] θ
2
[∫

Ω

(1 + |SN |)
(r+1)θ
2−θ dx

]1− θ2

≤ C0

[∫
Ω

(1 + |SN |)
(r+1)θ
2−θ dx

]1− θ2
.

It remains to bound the term in the square brackets on the right-hand side. We have from the
bound (20) that

(29)

∫
Ω

(1 + |SN |)
(1−r)p

2 dx ≤ C0 ∀ p ∈ [1, 2d/(d− 2)), ∀N ≥ 1,

which motivates us to link θ to p by demanding that

(30)
(r + 1)θ

2− θ
=

(1− r)p
2

,

i.e., that

θ =
2p(1− r)

2(r + 1) + p(1− r)
.

Trivially, θ < 2; in order to ensure that θ > 1, we demand that p > 2(r + 1)/(1 − r). Thanks to
the assumption that 0 < r < 1/(d− 1), we have that

2(r + 1)

1− r
<

2d

d− 2
,

and the set of p and θ that satisfy the requirements that 1 ≤ p < 2d/(d − 2), 1 < θ < 2, such
that the equality (30) holds, is therefore nonempty. With such θ and p, for 0 < r < 1/(d− 1) and
d ≥ 2 fixed, we have that ∫

Ω

|∇SN |θ dx ≤ C0 ∀N ≥ 1.(31)

By noting the definition of θ in terms of p and r and the restriction on the range of p, i.e.,
that 1 ≤ p < 2d/(d − 2), we deduce that {SN}N≥1 converges weakly in [W 1,θ(Ω)]d×d for all
θ ∈ [1, d(1− r)/(d− r − 1)). That completes the proof of (e).
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Uniqueness of the solution. Suppose that (Si, ui) ∈ [L1(Ω)]d×d × D1,∞
∗ (Ω), i = 1, 2, are such

that

(Si, D(v)) = (f, v) ∀ v ∈ D1,∞
∗ (Ω),

with D(ui) = F (Si) = Si(1 + |Si|r)1/r ∈ [L∞# (Ω)]d×d, where 0 < r < 2/d when d > 2 or 0 < r ≤ 1

when d = 2. Upon subtracting and taking v = u1 − u2 (note that this is an admissible choice,

since ui ∈ D1,∞
∗ (Ω), i = 1, 2), we have that

(S1 − S2, D(u1)−D(u2)) = 0.

On the other hand, (S1 − S2, D(u1) −D(u2)) = (S1 − S2, F (S1) − F (S2)) > 0 by Lemma 2; the
resulting contradiction implies the uniqueness of the solution. �

5. Renormalized solutions

In this section we introduce an alternative notion of solution to problem (3), (4): that of a
renormalized solution. The necessity for introducing this notion of solution is associated with the
fact that for r > 1 (if d = 2) or r ≥ 2/d (if d > 3) we are only able to show the validity of (3), (4)
up to a set Z of zero Lebesgue measure, and the potential loss of equality between the left-hand
side and the right-hand side of (3) on Z can be caused by an a priori unknown singular measure
concentrated on the set Z. We shall show however that the renormalized solution will coincide
with a weak solution provided that S has an improved integrability property. This statement is
made more precise in the following theorem.

Theorem 2. Suppose that f ∈ [W 1,t
∗ (Ω)]d for some t > 1, and let r > 0 be arbitrary; then, there

exists a pair (S, u) ∈ [L1
#(Ω)]d×d ×D1,∞

∗ (Ω) such that

D(u) = F (S) = S(1 + |S|r)− 1
r

and

(32) (S,D(v)) + 〈χ,D(v)〉 = (f, v) ∀ v ∈ [C1
∗(Ω)]d,

where χ ∈ [M#(Ω)]d×d is a symmetric periodic Radon measure that is not absolutely continuous
with respect to the Lebesgue measure and is supported on a subset of Ω of zero Lebesgue measure.
Moreover, the following energy inequality holds:

(33) (S,D(u)) ≤ (f, u).

In addition, for any g ∈ D(R) and any v ∈ [C∞∗ (Ω)]d the following renormalized equation holds:

(34) (S, g(|S|)D(v)) + (S,∇g(|S|)⊗ v) = (f, g(|S|)v).

Furthermore, the sequence of (uniquely defined) solution pairs (SN , uN ) ∈ ΣN × VN , N ≥ 1,
generated by (6)–(8), converges to (S, u) in the following sense:

(a) The sequence {uN}N≥1 converges to u strongly in [Lp∗(Ω)]d and weakly in [W 1,p
∗ (Ω)]d for

all p ∈ [1,∞);
(b) The sequence {D(uN )}N≥1 converges to D(u) weakly in [Lp#(Ω)]d×d for all p ∈ [1,∞);

(c) The sequence {SN}N≥1 converges to S + χ weak-∗ in [M#(Ω)]d×d;
(d) The sequence {D(uN )}N≥1 converges to D(u) strongly in [Lp#(Ω)]d×d for all p ∈ [1,∞);

(e) The sequence {SN}N≥1 converges to S a.e. in Ω.

Proof. First, using the sequence generated by (6)–(8), we apply the same procedure as in the
preceding section to extract a subsequence that we do not relabel such that (a) and (b) hold.
Further, thanks to the boundedness of the sequence {SN}N≥1 in [L1

#(Ω)]d×d, by applying the
Banach–Alaoglou theorem and Lebesgue’s decomposition theorem, we deduce the existence of a
symmetric periodic Radon measure S ∈ [M#(Ω)]d×d that is absolutely continuous with respect
to the Lebesgue measure, and of a symmetric periodic Radon measure χ ∈ [M#(Ω)]d×d that
is not absolutely continuous with respect to the Lebesgue measure, such that (a subsequence
of) {SN}N≥1 converges weak-∗ to S + χ in [M#(Ω)]d×d. On the other hand, Chacon’s biting
lemma implies the existence of a nondecreasing sequence {Ωk}∞k=1 of Lebesgue-measurable sets,
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Ωk ⊂ Ωk+1 ⊂ · · · ⊂ Ω, such that limk→∞ |Ω \ Ωk| = 0, and of a (Lebesgue measurable) function

Ŝ ∈ [L1
#(Ω)]d×d, such that, for each fixed k ≥ 1, we have

(35) SN ⇀ Ŝ weakly in [L1(Ωk)]d×d.

In particular, Ŝ can be assigned a Radon measure, in [M(Ωk)]d×d, whose Radon–Nikodým deriv-

ative is precisely Ŝ; hence the assigned Radon measure is absolutely continuous with respect to
the Lebesgue measure. As {SN}N≥1 converges weak-∗ to S + χ in [M(Ωk)]d×d, for each k ≥ 1,

we deduce by uniqueness of the weak limit that S + χ = Ŝ in [M(Ωk)]d×d, for each k ≥ 1, with

Ŝ on the right-hand side now understood as an element of [M(Ωk)]d×d. However S is absolutely

continuous with respect to the Lebesgue measure (as is Ŝ), while χ is not absolutely continuous

with respect to the Lebesgue measure. Hence, χ = 0 on each Ωk, and thus S = Ŝ ∈ L1(Ωk) for
each k ≥ 1. As χ = 0 on each Ωk, and |Ω \Ωk| → 0, it follows that χ is supported on subset of Ω

of zero Lebesgue measure. Therefore, S = Ŝ almost everywhere in Ω and S = Ŝ ∈ [L1
#(Ω)]d×d .

Next we prove (e). To do so, we first recall (18), which implies that, for all N ≥ 1,∫
Ω

|∇SN |2

(1 + |SN |)1+r
dx ≤ C0.

Thus, defining

BN :=
SN

(1 + |SN |)r+1
,

aN :=
1

(1 + |SN |)r
,

it follows that, for all N ≥ 1,

‖BN‖L∞(Ω) + ‖aN‖L∞(Ω) +

∫
Ω

|∇BN |2 + |∇aN |2 dx ≤ 2 + C

∫
Ω

|∇SN |2

(1 + |SN |)1+r
dx ≤ C ,

where the last inequality follows from Hölder’s inequality. Therefore, thanks to the compactness
of the Sobolev embedding of W 1,2

# (Ω) into L1
#(Ω), there exist subsequences (not indicated) such

that
BN → B strongly in [L1

#(Ω)]d×d,

aN → a strongly in L1
#(Ω),

BN → B a.e. in Ω,

aN → a a.e. in Ω.

Moreover, since {SN}N≥1 is a bounded sequence in [L1
#(Ω)]d×d, the nonnegativity of aN implies

that

a−
1
r ∈ L1

#(Ω) =⇒ a > 0 a.e. in Ω.

Finally, since

SN = BN (aN )−
r+1
r ,

the above pointwise convergence result implies that

SN → S a.e. in Ω,

where

S := Ba−
r+1
r ,

which is a measurable function that is finite a.e. in Ω. On the other hand, from (35) we have
weak convergence to S on Ωk and due to the uniqueness of the limit we obtain that

SN → S a.e. in Ωk.

Thanks to the properties of the sets Ωk it then follows that

SN → S a.e. in Ω.
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Moreover, using Fatou’s lemma, we deduce that∫
Ω

|S|dx ≤ lim inf
N→∞

∫
Ω

|SN |dx ≤ C,

which completes the proof of (e). Then, (d) easily follows from the definition of D(uN ) in terms
of SN . Similarly, one can obtain the energy inequality (33).

The rest of the proof is devoted to establishing the validity of (34). Having shown pointwise
convergence of the sequence {SN}N≥1, we deduce from the above a priori bounds that

(36)

SN
(1 + |SN |)r+1

⇀
S

(1 + |S|)r+1
weakly in [W 1,2

# (Ω)]d×d,

1

(1 + |SN |)r
⇀

1

(1 + |S|)r
weakly in W 1,2

# (Ω).

Next, let g ∈ C∞0 (R) be arbitrary. Then, the pointwise convergence of SN implies that

(37) g(|SN |)→ g(|S|) strongly in Lp#(Ω) for all p ∈ [1,∞).

Moreover, it also follows from (36) that

g(|SN |) ⇀ g(|S|) weakly in W 1,2
# (Ω).

In addition, as g has compact support, Lebesgue’s dominated convergence theorem implies that

(38) g(|SN |)SN → g(|S|)S strongly in [Lp#(Ω)]d×d for all p ∈ [1,∞).

Finally, using (36) we have that, for all N ≥ 1,∫
Ω

|∇SNg(|SN |)|2 dx ≤ C
∫

Ω∩{x;|SN |∈ supp g}
|∇SN |2 dx ≤ C.

By combining this with (38) and using the reflexivity of [W 1,2
# (Ω)]d×d we deduce that

(39) g(|SN |)SN ⇀ g(|S|)S weakly in [W 1,2
# (Ω)]d×d.

Hence, setting vN := PN (g(|SN |)v) in (6) with arbitrary v ∈ C1
#(Ω), we obtain the following

identity

(40)

∫
Ω

g(|SN |)SN : ∇v dx+

∫
Ω

SN : (∇g(|SN |)⊗ v) dx =

∫
Ω

PNf · g(|SN |)v dx.

Finally, we let N →∞ in (40) to obtain (34). Indeed, for the term on the right-hand side we use
(37). For the first term on the left-hand side we use (38) and the second term on the left-hand
side can be handled with the help of (39). �

6. Conclusion

This study contributes to the analysis of boundary-value problems describing the static state
of implicitly constituted elastic solids, as formulated in (1). In this generality, there are no results
known to the authors that are concerned with the analysis of the problem (1) and which involve
the left Cauchy–Green deformation tensor B. The only results, obtained recently (some of them
are presented in herein), concern a version of problem (1) where the tensor B is replaced by the
linearized strain D(u) = ε(u). Regarding this setting, the state of the art concerning the analysis
of the relevant boundary-value problems is the following:

(a) Consider −div T = 0 with (2) in Ω and a prescribed traction over the whole boundary
(i.e., Tn = g on the boundary) in a special geometric setting (a cylinder O × (−∞,∞)
with a planar cross-section O ⊂ R2) for a special deformation called anti-plane strain. One
is then allowed to introduce the Airy stress function U : O → R and the whole problem
reduces to a scalar Dirichlet problem

−div

(
∇U

(1 + |∇U |r)1/r

)
= 0 in O, U = U0 on ∂O.
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Note that the Neumann-type boundary condition for the original problem leads to a non-
homogeneous Dirichlet boundary condition for the Airy stress function over the entire
boundary ∂O. In [1], the following results are established: if Ω is convex, then there is
a unique weak solution to the problem for all r ∈ (0,∞). If Ω is nonconvex (such as a
V-notch, for example,) with constant Dirichlet data on noncovex parts of the boundary,
the existence of a unique weak solution is established for all r ∈ (0, 2). Since it is known
that there is a nonconvex set Ω such that a weak solution to (6) for r = 2 does not exist,
the results concerning nonconvex (as well as convex) domains seem to be sharp.

(b) In this study, we have considered the system of partial differential equations −div T = f
with (2) in any number of space dimensions; we have however confined ourselves to the
spatially periodic setting. Relying on a constructive approximation method, based on a
Fourier spectral method, we established the existence of a weak solution and its uniqueness
for r ∈ (0, 2/d). We further introduced the concept of renormalized solution and proved
its existence for any r ∈ (0,∞) and obtained the condition on S that suffices to deduce
that the renormalized solution is in fact a weak solution.

(c) In general situations, yet within the framework involving the linearized strain, most of
the analytical problems concerning existence, uniqueness and stability of solutions are
open. The only exception is the existence of a weak solution to (1) with nonhomogeneous
Dirichlet data, i.e., ΓN = ∅, for r ∈ (0, 1/d); the proof of existence of a weak solution
in this case will be presented in a forthcoming paper. There are no results we are aware
of concerning the existence of renormalized solutions on general bounded domains, with
either Dirichlet, or Neumann, or mixed boundary condition on the displacement u.
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Appendix

The purpose of this Appendix is to prove some auxiliary results, which are required in the
arguments in the main body of the paper. In particular, we shall prove the inf-sup condition (5).
We begin with the statement of Korn’s inequality in the Lp norm, whose proof is also included for
the sake of completeness, as we were unable to find it in the literature in the context of periodic
boundary conditions. For p = 2 we explicitly calculate (an upper bound on) the constant in Korn’s
inequality in the L2 norm, which then allows us to specify (a lower bound on) the constant cinf-sup
appearing in the inf-sup condition (5).

Lemma A.1 (Korn’s inequality in Lp). Let p ∈ (1,∞), d ≥ 2 and Ω := (0, 2π)d. There exists a
positive constant cp such that the following inequalities hold:

‖∇v‖Lp(Ω) ≤ cp
(
‖D(v)‖Lp(Ω) + ‖div v‖Lp(Ω)

)
∀ v ∈ [W 1,p

∗ (Ω)]d,

and, hence, also, with a possibly different constant cp,

‖∇v‖Lp(Ω) ≤ cp‖D(v)‖Lp(v) ∀ v ∈ [W 1,p
∗ (Ω)]d.

Let, further, Ddev(v) := D(v)− 1
d (div v)I denote the deviatoric part of D(v), where I is the identity

matrix in Rd×d; then, there exists a positive constant cp such that

‖∇v‖Lp(Ω) ≤ cp‖Ddev(v)‖Lp(Ω) ∀ v ∈ [W 1,p
∗ (Ω)]d.

Besides being dependent on p, the constant cp (whose specific value may change from one line to
the next) also depends on d, but we do not explicitly indicate that. In each case, the left-hand
side of the inequality can be further bounded below by Cp‖v‖W 1,p(Ω), where Cp is another positive
constant dependent on p, but independent of v.

Proof. The statement in the penultimate sentence of the lemma is an immediate consequence of
Poincaré’s inequality for functions v ∈ [W 1,p

∗ (Ω)]d (which, by definition, have zero integral over
Ω); viz.,

Cp‖v‖W 1,p(Ω) ≤ ‖∇v‖Lp(Ω) ∀ v ∈W 1,p
∗ (Ω).

The second stated inequality is an immediate consequence of the first inequality, based on the
following argument: div v = trD(v); hence, by the Cauchy–Schwarz inequality for matrices,

|div v| = |trD(v)| = |I : D(v)| ≤ |I| |D(v)| = d1/2 |D(v)|,

and thus, also ‖div v‖Lp(Ω) ≤ d1/2‖D(v)‖Lp(Ω), so the second stated inequality is implied by the
first.

In order to prove the two remaining inequalities we proceed as follows. As [C∞∗ (Ω)]d is, by

definition, dense in [W 1,p
∗ (Ω)]d for p ∈ (1,∞), it suffices to prove the inequalities for v ∈ [C∞∗ (Ω)]d.

For any such smooth v, we have that

∆v = 2 divD(v)−∇(div v).

Because ∆ has a well-defined inverse when considered as a mapping from [C∞∗ (Ω)]d into itself, we
apply ∆−1 to both sides of the last equality and we then apply the gradient operator ∇ to both
sides of the resulting equality, which then yields

∇v = 2(∇∆−1divD(v))− (∇∆−1∇div v).

Here, ∇v is understood to mean the d × d matrix whose (i, j) entry is (∇v)ij = ∂
∂xi

vj for i, j =
1, . . . , d. Let us also define

(Fv)(k) := v̂(k) =
1

(2π)d

∫
Ω

v(x) e−ı k·x dx

so that v = F−1Fv, with

(F−1Fv)(x) = (F−1v̂)(x) =
∑
k∈Zd

v̂(k) eı k·x.
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When applied to matrix-functions, the transforms F and F−1 are understood to be acting component-
wise; thus, for example, FM for a matrix function M = (mij)

d
i,j=1 means a matrix whose (i, j)

entry is Fmij . A straightforward calculation yields that

∇v = F−1F(∇v) = 2F−1[F(∇∆−1divD(v))]−F−1[F(∇∆−1∇div v)]

= 2F−1

[
k ⊗ k
|k|2

F(D(v))

]
−F−1

[
k ⊗ k
|k|2

F(div v)

]
.

Here, in the first square bracket we have the product of the d × d matrix (k ⊗ k)/|k|2 with the
matrix F(D(v)), with F being applied component-by-component to the entries of the d×d matrix
D(v); while in the second square bracket we have the d× d matrix (k⊗ k)/|k|2 post-multiplied by
the scalar F(div v).

Hence,

‖∇v‖Lp(Ω) ≤ 2

∥∥∥∥F−1

[
k ⊗ k
|k|2

F(D(v))

]∥∥∥∥
Lp(Ω)

+

∥∥∥∥F−1

[
k ⊗ k
|k|2

F(div v)

]∥∥∥∥
Lp(Ω)

≤ cp
(
‖D(v)‖Lp(Ω) + ‖div v‖Lp(Ω)

)
,

where in the transition to the last line we used that, thanks to Lizorkin’s multiplier theorem,
ξ ∈ Rd \ {0} 7→ ξi ξm

|ξ|2 ∈ R is a Fourier multiplier in Lp(Rd), 1 < p < ∞, and thus by De Leeuw’s

transference theorem (cf. Theorem 3.8 on p.260 of Stein & Weiss [19], or Theorem 3.4.2 and
Remark 3.4.4 in Schmeisser & Triebel [18]), its restriction to Zd\{0}, i.e., k ∈ Zd\{0} 7→ ki km

|k|2 ∈ R
is a Fourier multiplier in Lp#(Ω) (and hence in Lp∗(Ω)), for all i,m = 1, . . . , d. Since Lizorkin’s
multiplier theorem is usually formulated for R-valued functions while here we are working with
Rd×d-valued functions, we shall provide the details of the calculation for the first summand in
the penultimate line above, but will then omit the details of similar subsequent calculations. It
has to be borne in mind that the meaning of the Lp norm of a certain matrix function, say,
G : x 7→ (Gij(x))di,j=1 is that we take the standard Lp norm for scalar-valued functions of the
matrix norm |G| of G. In our case,

Gij =

(
F−1

[
k ⊗ k
|k|2

F(D(v))

])
ij

=

d∑
m=1

F−1

[
ki km
|k|2

F((D(v))mj)

]
.

Now, |G| ≤
∑d
i,j=1 |Gij |, and therefore

‖G‖Lp(Ω) ≤
d∑

i,j=1

d∑
m=1

∥∥∥∥F−1

[
ki km
|k|2

F((D(v))mj)

]∥∥∥∥
Lp(Ω)

.

We then apply a combination of Lizorkin’s theorem and De Leeuw’s theorem to each of the d3

summands, resulting in

‖G‖Lp(Ω) ≤
d∑

i,j=1

d∑
m=1

mp

(
ki km
|k|2

)
‖(D(v))mj ‖Lp(Ω),

where mp(·) is the multiplier norm in Lp(Ω). By letting cp := maxi,m=1,...,dmp

(
ki km
|k|2

)
and noting

that, for each fixed m, j ∈ {1, . . . , d}, |(D(v))mj | ≤ |D(v)| and therefore ‖(D(v))mj ‖Lp(Ω) ≤
‖|D(v)|‖Lp(Ω) = ‖D(v)‖Lp(Ω), we have that

‖G‖Lp(Ω) ≤ d3cp‖D(v)‖Lp(Ω),

and hence ∥∥∥∥F−1

[
k ⊗ k
|k|2

F(D(v))

]∥∥∥∥
Lp(Ω)

≤ d3cp‖D(v)‖Lp(Ω).
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Similarly,∥∥∥∥F−1

[
k ⊗ k
|k|2

F(div v)

]∥∥∥∥
Lp(Ω)

≤
d∑

i,j=1

mp

(
ki kj
|k|2

)
‖div v‖Lp(Ω) ≤ d2cp‖div v‖Lp(Ω).

The factors d3 and d2 are then absorbed into the symbol cp, without further explicit indication of
its dependence on d. This then proves the first stated inequality.

It remains to prove the third inequality in the statement of the lemma. To this end, we note
that

divDdev(v) = divD(v)− 1

d
div ((div v) I)

=
1

2
∆v +

1

2
∇ div v − 1

d
∇div v.

Hence,

div divDdev(v) =
1

2
∆ div v +

1

2
div (∇ div v)− 1

d
div (∇(div v)) =

d− 1

d
∆ div v,

whereby

div v =
d

d− 1
∆−1 div divDdev(v).

Using this identity in the transition from the second to the third line in the chain of equalities
below, and the definition of Ddev(v) in the transition from the first to the second line yields:

∆v = 2 divD(v)−∇ div v

= 2 div

[
Ddev(v) +

1

d
(div v) I

]
−∇(div v)

= 2 divDdev(v)+
2

d
div

[
d

d− 1
(∆−1 div divDdev(v)) I

]
−∇

[
d

d− 1
∆−1 div divDdev(v)

]
,

and therefore, by applying ∆−1 to both sides, and then ∇ to both sides of the resulting equality,
we have that

∇v = 2∇∆−1 divDdev(v) +
2

d− 1
∇∆−1 div [(∆−1 div divDdev(v)) I]

− d

d− 1
∇∆−1∇[∆−1 div divDdev(v)].

Thus,

∇v = F−1F(∇v) = 2F−1

[
k ⊗ k
|k|2

F(Ddev(v))

]
+

2− d
d− 1

F−1

[
k ⊗ k
|k|2

(
k ⊗ k
|k|2

: F(Ddev(v))

)]
,

which then implies, with cp := maxi,j=1,...,dmp

(
ki kj
|k|2

)
, that

‖∇v‖Lp(Ω) ≤ 2

∥∥∥∥F−1

[
k ⊗ k
|k|2

F(Ddev(v))

]∥∥∥∥
Lp(Ω)

+
d− 2

d− 1

∥∥∥∥F−1

[
k ⊗ k
|k|2

(
k ⊗ k
|k|2

: F(Ddev(v))

)]∥∥∥∥
Lp(Ω)

= 2

∥∥∥∥F−1

[
k ⊗ k
|k|2

F(Ddev(v))

]∥∥∥∥
Lp(Ω)

+
d− 2

d− 1

∥∥∥∥F−1

[
k ⊗ k
|k|2

F
[
F−1

(
k ⊗ k
|k|2

: F(Ddev(v))

)]]∥∥∥∥
Lp(Ω)

≤ 2 d3cp‖Ddev(v)‖Lp(Ω) +
d− 2

d− 1
d2cp

∥∥∥∥F−1

(
k ⊗ k
|k|2

: F(Ddev(v))

)∥∥∥∥
Lp(Ω)

≤ 2 d3cp‖Ddev(v)‖Lp(Ω) +
d− 2

d− 1
d4cp‖Ddev(v)‖Lp(Ω),
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where in the transition to the penultimate line, and then again in the passage to the last line, we
used that k ∈ Zd \ {0} 7→ ki kj/|k|2 ∈ R is a Fourier multiplier in Lp∗(Ω) for all i, j = 1, . . . , d
and all p ∈ (1,∞). After merging the two terms on the right-hand side in the last displayed line,
and absorbing dependence on d into our notation for the constant cp, we thus arrive at the third
stated inequality. �

We shall now consider Lemma A.1 in the special case when p = 2, and will provide an elementary
proof, which will allow us to explicitly compute the constant cp in Korn’s inequality stated in
Lemma A.1 for p = 2, and thereby also the constant cinf-sup appearing in the inf-sup condition (5).

Lemma A.2 (Korn’s inequality in L2). We have that

‖v‖L2(Ω) ≤
√

2 ‖D(v)‖L2(Ω) ∀ v ∈ [W 1,2
∗ (Ω)]d,

and

‖v‖W 1,2(Ω) ≤ 2 ‖D(v)‖L2(Ω) ∀ v ∈ [W 1,2
∗ (Ω)]d.

Proof. Let v ∈ [C∞∗ (Ω)]d. Again, we shall use that the function v then has the Fourier series
expansion

v(x) =
∑

k∈Zd\{0}

v̂(k) eik·x, where v̂(k) :=
1

(2π)d

∫
Ω

v(x) e−ik·x dx.

By partial integration in the transition from the third to the fourth line below, dropping the
nonnegative term ‖div v‖2L2(Ω) and using Parseval’s identity in the transition from the fourth to

the fifth line, and again in the last line, we have that

‖D(v)‖2L2(Ω) =
1

4

d∑
i,j=1

∫
Ω

∣∣∣∣ ∂vi∂xj
+
∂vj
∂xi

∣∣∣∣2 dx

=
1

4

d∑
i,j=1

∫
Ω

∣∣∣∣ ∂vi∂xj

∣∣∣∣2 + 2
∂vi
∂xj

∂vj
∂xi

+

∣∣∣∣∂vj∂xi

∣∣∣∣2 dx

=
1

2

d∑
i,j=1

∫
Ω

∣∣∣∣ ∂vi∂xj

∣∣∣∣2 +
∂vi
∂xj

∂vj
∂xi

dx

=
1

2

(
‖∇v‖2L2(Ω) + ‖div v‖2L2(Ω)

)
≥ 1

2
(2π)d

∑
k∈Zd\{0}

|k|2|v̂(k)|2

≥ 1

2
(2π)d

∑
k∈Zd\{0}

|v̂(k)|2 =
1

2
‖v‖2L2(Ω).

Thus, by a density argument, we deduce the inequality

‖v‖L2(Ω) ≤
√

2 ‖D(v)‖L2(Ω) ∀ v ∈ [W 1,2
∗ (Ω)]d.

Since both ‖D(v)‖2L2(Ω) ≥
1
2‖∇v‖

2
L2(Ω) and ‖D(v)‖2L2(Ω) ≥

1
2‖v‖

2
L2(Ω), we have, by adding these

two inequalities and then taking the square root, the desired inequality:

‖v‖W 1,2(Ω) ≤ 2 ‖D(v)‖L2(Ω) ∀ v ∈ [W 1,2
∗ (Ω)]d.

That completes the proof. �

We are now ready to prove the inf-sup condition (5). Given any vN ∈ VN \ {0}, we consider
the function TN ∈ ΣN \ {0} defined by TN = D(wN ), where wN ∈ VN is the unique solution of
the problem

(D(wN ), D(zN )) = (vN , zN ) ∀ zN ∈ VN .
We note that, indeed, TN 6= 0; for, if it were the case that TN = 0, then we would have (vN , zN ) = 0
for all zN ∈ VN , and hence vN = 0, which would contradict our assumption that vN ∈ VN \ {0}.
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The existence and uniqueness of wN is a direct consequence of the Lax–Milgram theorem and
Korn’s inequality, as stated in Lemma A.2. Hence,

b(vN , TN ) := (−vN ,divTN ) = (−vN ,divD(wN )) = (D(vN ), D(wN ))

= (D(wN ), D(vN )) = ‖vN‖2L2(Ω).

As (−div TN , zN ) = (−divD(wN ), zN ) = (D(wN ), D(zN )) = (vN , zN ) for all zN ∈ VN , we have,
with zN = −div TN , that

‖div TN‖2L2(Ω) = (−div TN ,−div TN ) = (vN ,−div TN ) = b(vN , TN ).

Further, by Lemma A.2,

‖TN‖2L2(Ω) = ‖D(wN )‖2L2(Ω) = (vN , wN ) ≤ ‖vN‖L2(Ω)‖wN‖L2(Ω)

≤
√

2 ‖vN‖L2(Ω)‖D(wN )‖L2(Ω) =
√

2 ‖vN‖L2(Ω)‖TN‖L2(Ω),

whereby
‖TN‖2L2(Ω) ≤ 2 ‖vN‖2L2(Ω) = 2 b(vN , TN ).

Now, summing this last inequality and the equality

‖divTN‖2L2(Ω) = b(vN , TN ) = ‖vN‖2L2(Ω)

yields that

b(vN , TN ) ≥ 1
3 ‖TN‖

2
H(div;Ω)

≥ 1
3 ‖TN‖H(div;Ω)‖divTN‖L2(Ω)

= 1
3 ‖TN‖H(div;Ω)[b(vN , TN )]

1
2

= 1
3 ‖TN‖H(div;Ω)‖vN‖L2(Ω).

Thus we have shown that for each vN ∈ VN \ {0} there exists a TN ∈ ΣN such that

b(vN , TN ) ≥ 1
3 ‖TN‖H(div;Ω)‖vN‖L2(Ω).

This implies that

sup
TN∈ΣN\{0}

b(vN , TN )

‖TN‖H(div;Ω)
≥ 1

3 ‖vN‖L2(Ω) ∀ vN ∈ VN ,

and hence,

inf
vN∈VN\{0}

sup
TN∈ΣN\{0}

b(vN , TN )

‖vN‖L2(Ω)‖TN‖H(div;Ω)
≥ 1

3 .

We thus deduce that the inf-sup condition (5) holds, with cinf-sup ≥ 1/3.
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E-mail address: mbul8060@karlin.mff.cuni.cz

Mathematical Institute of Charles University, Sokolovská 83, 186 75 Prague, Czech Republic
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