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WEIGHTED INTEGRAL TECHNIQUES AND C*-ESTIMATES
FOR A CLASS OF ELLIPTIC SYSTEMS WITH p-GROWTH

MIROSLAV BULICEK, JENS FREHSE, AND MARK STEINHAUER

ABSTRACT. We consider weak solutions to nonlinear elliptic systems in a W1-P-
setting which arise as Euler - Lagrange equations to certain variational in-
tegrals plus pollution term and/or we consider minimizers to a variational
problem. The solutions are assumed to be stationary in the sense that the
differential of the variational integral vanishes with respect to variations of the
independent and dependent variables. We impose new structural conditions
on the nonlinearities which yield C*-regularity and C®-estimates for the solu-
tions. These structure conditions cover variational integrals like [ F(Vu) dx
with potential F(Vu) := F(Q1(Vu), ..., Qn(Vu)) and positively definite qua-
dratic forms Q; in Vu defined as Q;(Vu) = 3,4 a??Vu . Vuf. A simple
example consists in F(€1,€2) := [€1]% + |62/ % or F(€1,62) = [€1]¥|€2|% . Since
the quadratic forms @Q; need not to be linearly dependent our result covers a
class of nondiagonal, possibly nonmonotone elliptic systems. As a by product
we also prove a kind of the Liouville theorem. As a new analytical tool we
use a new weighted integral technique with singular weights in an LP-setting
for the proof and establish a weighted hole-filling inequality in a setting where
Green-function techniques are not available.

1. INTRODUCTION AND STATEMENT OF THE RESULT

This paper deals with nonlinear elliptic system of the form
(1.1) —div F,)(u, Vu) + F,(u, Vu) = b(z, u, Vu)

that is supposed to be satisfied in an open set Q C R%. The left hand side of (1.1)
is the Euler operator of a variational integral

(1.2) J(u) ::/QF(u,Vu)

with p-growth (with p € (1,00)) in the gradient of an unknown u :  — RY. The
right hand side of (1.1) is a pollution term with b : Q x RY x RN — RY being
a Carathéodory mapping which satisfies certain growth assumptions (see below for
precise formulation). The potential F' : RY x RN — R is supposed to be a C*
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function which has the p-growth in the second variable and through the paper we
employ the notation

F

Fy(u,n) == 78 ((;:77 n) (RY x RIXN 5 RIXN,
F

F.(u,n) = 76 g;i’ n) ‘RY x RN s RV,

In particular, we also use the following abbreviations

OF (u,m &t OF (u,m
Fop (u,m) o= ( én )> . 8<na )’

OF (u, * OF (u,
ue () ( éu 77)) : a(uan)

The paper focuses on new weighted estimates for a solution to (1.1) and/or to
minimizers of (1.2) from which we finally deduce the everywhere Holder continuity
of the solution and the Liouville theorem for the system (1.1). This paper also
completes and extends the results based on the weighted estimates obtained in
[5, 6], where however the simpler cases were solved - in [5] the authors considered
the potential F' being u independent and in [6] only the quadratic growth, i.e. p =2
is considered.

In order to simply describe the main novelties of the paper, we first (and very
roughly) describe the structural assumptions on the potential F', which will be
later described in more details. It is worth of noticing that we do not consider any
convexity of F with respect to the second variable here and we replace it just by
the standard p-coercivity and p-growth assumption on F. Besides them we impose
in addition two following conditions.

(i) a one sided condition, i.e.,

and related generalizations;
(ii) a type of generalized splitting condition which allow us to treat potentials of
the form:

k
(1.3) F'(u,n) :=Zaz(u)|n|§),
i=1
k k
(14) FQ(UJI) = CL(U)H|77 ?ia Di ER, Zpl =D,
i=1 i=1
for some k € N and for the ¢’s norm defined through
N d
|77|$ = Z Z Biaﬁhlmmangu
a,B=11lm=1

where, the matrices B; € R™V*¥ are assumed to by symmetric and positively definite
as well as the matrix h € R?¥?  Notice here, that while there B; can vary for
different is the matric h is the same for all i-norms. In principle, we could also
consider h to be z-dependent but for simplicity we omit such a generalization here
and we refer the interested reader to [5] for detailed comments.
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In case k = 1 we will refer to (1.3) or (1.4) as to the potential having the Uh-
lenbeck! structure. However, since matrices B; need not to commute the potential
F given by (1.3)—(1.4) can be very complex (and for (1.4) even non-convex in the
second variable) and consequently the system (1.1) can be highly non-diagonal
(or even non-elliptic) and moreover “far away” from the Uhlenbeck like structure,
which is (up to small perturbations) the only case of a non-diagonal operator where
the full regularity and other important qualitative properties of the corresponding
elliptic boundary value problem are available, see [25] or [17, 18] for related gener-
alizations. On the other hand for general elliptic systems and/or potentials F' even
being u-independent, one cannot expect the everywhere regularity theorem as was
shown in [23] for solution being not C! and in [26] for unbounded solutions. From
this background it is of interest to find other classes of non-diagonal principal part
where everywhere regularity theorems (e.g. everywhere Hoder continuity theorem,
which is one of the results proved here), Liouville theorems, etc., can be established
and the potentials given in (1.3)—(1.4) may serve as a prototype examples.

Since the term F, in the equation may still have the critical p-growth with
respect to 7, the C*-regularity of a solution may fail. The so-called one sided
condition is an additional condition on the structure of F' that allows us to obtain
regularity of the solution (combined with further assumptions). In applications
to differential geometry (in that case usually p = 2 and F' is of the Uhlenbeck
structure), the one sided condition has a geometrical interpretation. Moreover,
it is known for F' not satisfying such a condition the solution or minimizer may
not be continuous, see [8, 12, 13, 14]. Further, the one sided condition occurs
also in Bellman systems of stochastic differential games with discount control, see
[2, 3]. In addition, for non-variational problems, even for d = p = 2, the one sided
condition need not be sufficient for the Holder continuity of the solution, cf. the
example in [1]. In such cases to obtain Holder continuity of the solution one need
to assume a priori more structural information about the solution and a prototype
example is the so-called angle condition of Wiegner [27, 29, 28, 30]. On the other
hand, in variational case this angle condition is not needed, as one can see from
our present paper. Furthermore, the equation are much more general (p-growth,
possible non-convexity, generalized splitting condition rather than the diagonallity
of the principal part).

1.1. Assumptions on the data. First, we specify the precise structural assump-
tions imposed on the potential F' and we also discuss them in context of the proto-
type examples (1.3)—(1.4). In the rest of this section we assume that ag,af, 04 are
given strictly positive constants and that §o > 0. The starting assumptions are the
standard coercivity, growth and smoothness assumption on F, namely

(1.5) F € CY (RN x RN,

(1.6) ap|n|? — af < F(u,n) < of(In|” +1) for all (u,n) € RY x RN,
Note that in the case when F is given by (1.3)-(1.4), the assumptions (1.5)-(1.6)
reduces to condition that a® € C! are strictly nonnegative bounded functions. Fore

sure, the assumptions (1.5)-(1.6) are not sufficient for proving further qualitative
results for the solution w as is well demonstrated in [26, 23, 15] for counterexamples

1We call it Uhlenbeck according to the first proof of the regularity of systems with F' having
the structure (1.3) with & = 1 authored by Uhlenbeck [25].
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for even convex potentials. Therefore, inspired by introduction we introduce a
generalized version of the one-sided condition i), namely

p—2 *
(1.7) Ey(u,n) - n+ Fulu,n) -u> a8+ [01*) = nf* — of

for all (u,n) € RN x RN, To illustrate this assumption for F given by (1.3)—(1.4)
we first evaluate F, and F,,. Thus, a simple algebraic manipulation gives

k N d
(1.8) Do d @l B by,
i=1 f=1m=1
E N d k

i—2 pa j

(1.9) FZ, @Y D> w2 B iy, [T 1l
i=1 B=1m=1 j—l,j;éi

(1.10) Zaua nlf,  Fea(u,m) = aue(u Hlnlp‘
Next, it is evident that in both cases we have that
(1.11) Fr2(u,n) -0 =pF"?(u,n)
and therefore for such potentials the assumption (1.7) reduces to
(1.12) a'(u) + pal,(u) - u > ap.

Next, we introduce the generalized splitting condition (related to ii)). We assume
that there exists a symmetric matric-valued function A : RY x RN 5 RNXN 5
matrix-valued function H : RN x R¥*N 5 RNXd and positively definite symmetric
matrix A € R4*? such that

(1.13) “—ZZA (s iy’ + H (u,m)

B=1m=1

for all (u,n) € RV x RN alll =1,...,d and all @ = 1,..., N and we assume
that
(1.14) [H (u,m)| < ag(L+ [n])P~ 0=
In addition, we require that A is uniformly p-positively definite, that means
N
p—2 * p=2
(L15) D7 A = ol +00) "7 [, [Ausn)] < (G0 + Inf>)"2
a,f=1
uniformly with respect to the argument of w, u and 1. Note that (1.13) holds for
F given by (1.3)—(1.4) with H being identically zero. Indeed defining A; 5 by

AN —pZa In[f=2B”,

A5 = a(u szln\p’_23a5 H |’
Jj=Lj#i
we see that (1.13) holds. It is also easily follows from positive definiteness of B;
that (1.15) holds also for A;. Moreover, for As it is valid as well in case that p; > 0
foralli =1,...,k. Even more, if some p; is negative the validity of (1.15) still may
hold under some additional hypothesis on the structure of B;. Moreover, due to
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the presence of the pollution term H in (1.13) we can even consider the case when
B; depends on 7 and then besides the ellipticity condition we require that

(1.16) |By(m)] < ag(L+ |n) =t

which automatically guarantee the validity of (1.13) and (1.14). Variational inte-
grals with p-growth and splitting condition have been consider in wide literature,
we refer here to [10] for the proof of partial regularity of the solution and we would
like to also mention the original results [11]. For more general overview of known
results for nonlinear elliptic systems, we refer the interested reader to [22, 12] and
the references therein.

The last restriction we impose on F' is related to the p-growth and p-coercivity
also for F},, which however seems to be very natural and valid for most potentials.
Hence we assume in the paper that for all (u,n) € RY x R¥¥ the following holds

p—2
(1.17) —ag + ao(bo + 11*) = |nl* < Fy(u,m) - n < pF(u,n) + E(u,n)
with E satisfying

(1.18) |E(u,n)| < C(1+ [n)P~*

for all (u,n) € RY x RN Again note that (1.17) is trivially valid for F'! and F?
even with £ = 0 (see (1.11)) and one can observe that the presence of p in front of
F in (1.17) is a natural setting. Moreover, the presence of E allows us to consider
more general structure than (1.3)—(1.4) just by adding some lower order terms or
just by considering B dependent on 1 and satisfying (1.16). To complete the set of
assumptions on F' we add there also the natural growth conditions for F; and F),

(119)  |Fy(a )l + | Fu(unm)| < ag(L+[n?)  for all (u,y) € RY x R&N,

Having all these assumptions on F' we finally introduce the growth condition for
b, i.e., we require that it satisfies the following

(1.20)  |b(z,u,n)| < ab(1+ |nP~170%4) for all (z,u,n) € Q x RY x RV,

A lot of alternative conditions with better growth in 7 is possible. We consider the
pollution term in order to destroy the variational structure and thus to exclude the
use of arguments based on minimization properties. However, it is also of interest
to consider the minimizers or just to simply set b = 0.

1.2. Statement of the results. In this subsection we state all main results of
the paper. Before doing it, we recall some important notions needed in the paper.
First, for simplicity we denote Dy := %. Since we deal with a weak solution to
(1.1), which in principle do not need to have certain usual qualitative properties, we
need to add such properties to them a priori. However, it appears (and is inspired
by [5]) that the only property is the so-called the Noether equation, which has the

form

—div(F, (u, Vu) - Dgu) + Dy F(u, Vu) = b(z, u, Vu) - Dyu, forall k=1,...,d,
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or in a weak formulation

d N

Z Z Fye (u, Vu) Dith; Dju® — F(u, Vu) div e dz
(1.21) Pig=lasl

d N

= / DO b (u, Vu)yyiDiu® do - for all ¥ € D(Q;R?).

Qi=1a=1
Note that the Noether equation can be formally derived from (1.1) by multiplying
by Dyu, but in general cannot be derived rigorously due to the low regularity of u.
On the other hand, in case we deal with minimizers to (1.2), we can show also the
validity of (1.21) without any a priori knowledge (see [4, 6]). To be more precise,
we say that a solution u € WHP(Q; RY) is a minimizer if for all ¢ € D(Q;RY) it

satisfies

(1.22) / F(u,Vu) dx < / F(u+ ¢, Vu+ Vo) —b(z,u, Vu) - ¢ dz.
supp ¢ supp ¢

Note that in case b depends only on x it is a standard notion to minimizer of the
variational problem

/ F(u,Vu) —b-udz.
Q

It is worth of noticing that the Noether equation as an additional condition plays
an important in regularity theory of harmonic mappings, cf. [7] or [21] but can
be also used for further investigation of qualitative properties to variational but
non-coercive problems, see [24].

Finally, since we have to deal with possible unbounded solutions, we need to
add some additional conditions. Thus, either we assume some more restrictive
assumption on F' or we will assume some critical explosion rate for the mean value
for the given solution u. To be more precise, we say that u satisfies the In condition
in Q if there exists Ci, such that for all Br(zo) C Q and all R < 1

/ u dz
BR(:EQ)

Another possibility how to avoid a possible explosion of the solution is to assume
more restrictive condition on F. Therefore, in case (1.23) is not valid we will need
that for all « = 1,..., N either

(1.23) < Cp|In B™0(37) pe

!
(124)  Feo(wmu® > —22l" =5 and [Fua(u,n)] < au®)(1+ pl?),
or
(1.25)  Fua(u,mu® < a(u®)(1+n")  and [Fya(u,n)| < aw®)(1+ [n]"),
where a is a nonnegative continuous function fulfilling

a(s) =0 if s — £o0.

Note that (1.24) or (1.25) may be viewed as a no further restriction (see (1.7) where
the growth of F, - u is considered) and therefore (1.24) or (1.25) represents a kind
of small oscillation property for large values of w.

Therefore in what follows, we state all theorem either for minimizers, or for just
weak solution satisfying in addition certain regularity or satisfying (1.21) and we
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shall also assume either (1.25) or (1.23). The first result of the paper is the local
everywhere Holder continuity result.

Theorem 1.1 (Local Holder continuity). Let Q C RY be an open set and let F
satisfy (1.5)~(1.7), (1.13)~(1.15) and (1.17)—~(1.19) and let b satisfy (1.20). Assume
that u € Wli’f(Q;RN) is a weak solution to (1.1). Then there exists a € (0,1)
depending only on g, ag, do such that for any Qy CC Q

(1.26) [ullea o) < K,
provided that one of the following holds:

1) w is a minimizer, i.e., satisfies (1.22), and either F satisfies (1.24) or
(1.25), or the condition (1.23) holds. Then K = K (||ul|1,p, Q0, a0, 04, Cin)
and in case we consider (1.24) or (1.25) then K does not depend on Cy.

2) u is continuous and either u satisfies (1.21) or u € WP+l NW2 . Then
K= K(Hu”Lp, Cln; Qo, «Qp, OKS, (5A)-

Furthermore, in case p = 2 the constant K does not depend on Cy,.

We would like to point our here, that the condition 1) states the Hélder continuity
for any weak solution being minimizer with the bound K depending only on known
data and 2) is though to be used for proving the uniform C* estimates for a regular
approximative problem which then lead to the existence for ate least one Holder
continuous solution in case that F' is convex with respect to n and if L a priori
bound is available.

The second theorem states the the Holder continuity of the solution near the
boundary.

Theorem 1.2 (Boundary regularity). Let @ C R? be an open bounded set with
CHY boundary. Let F satisfy (1.5)—(1.7), (1.13)—(1.15) and (1.17)—(1.19) and let
b satisfy (1.20). Assume that u € WP (;RN) is a weak solution to (1.1). Then
there exists €, > 0 such that such that

(1.27) lullce .y < K, Q. :={x € Q; dist (z,00) < €}.

provided that one of the following holds:

1) w is a minimizer, i.e., satisfies (1.22). Then K = K(||ul1,p, a0, a,04).
ptl

2) w is continuous and either u satisfies (1.21) or u € WEPTINW?2 =", Then
K = K(||ullp, a0, a5, 04)-

It should be mention here that while in Theorem 1.1 we require either some
a priori knowledge about the possible blow up of mean values or we assumed further
conditions on F (namely (1.24) and (1.25)), in Theorem 1.2 such restrictions are
not needed. It is due to the fact, that we already fixed © = 0 at the boundary 0f2.
Moreover, the corresponding estimate represented by K in (1.27) does not depends
on L* bound of the solution.

The last theorem we prove is the Liouville type theorem.

Theorem 1.3 (Liouville theorem). Let F satisfy (1.5)—(1.7), (1.13)—(1.15), (1.17)-
(1.19) and let F(u,\n) = NPF(u,n) for all u,n and all A\ > 0. Assume that u €
Wﬁ)’p(Rd; RN) is a weak solution to (1.1) with b= 0. Then u is a constant provided

C

that one of the following holds:
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1) w is a minimizer, i.e., satisfies (1.22), F satisfies (1.25) and that there
exists a constant C > 0 such that (BMO property at infinity)

(1.28) / |u — T, < CR? for all R > 1.
Br(0)

2) u is bounded and satisfies (1.21) for all ¢ € D(RY;RY).

Note here that in case p > d, the proof of Theorem 1.3 is standard and based
on the testing by solution and using the one sided condition. Therefore the main
novelty for this setting consist in case p < d, where we are able to replace the
assumption on the decay of Vu at infinity by some corresponding weighted estimates
for [Vu|P. Furthermore, although the condition (1.28) does not fit well to the one
sided condition, the Liouville theorem still holds. The importance of a such theorem
also follows from the results in [19, 20, 16], where the very close relation between
the Liouville theorem and the C1'® regularity of the solution is investigated in the
setting when one assumes that Vu is bounded. Here, we consider the case with
one derivative less and therefore Theorem 1.3 is related to C* regularity and can be
further used for an indirect approach, where as the comparison problem one take
the potentials fulfilling assumptions of Theorem 1.3.

Finally, in case we assume that F' is uniformly p-convex in the second variable,
one can use the standard difference quotient technique and the interpolation theo-
rem and to prove the following

Corollary 1.1. Let all assumptions of Theorem 1.1 be satisfied and assume that b
is bounded. In addition, let F' satisfy

OF (u,
Z Z a Z US> C00 + |Vul) = a2,
a,f=11%,j=1 8

Then
(0 + |Vu>) T e Wh2(Q).

loc

Furthermore, there exists € > 0 such that
uEWllq(QRN) forq:=p+2+e.
In addition, if F has the Uhlenbeck structure then u € C}- Y(Q;RY) for some o > 0.

loc

The rest of the paper is devoted to the proof of Theorem 1.1-1.3. For sake of
simplicity we prove all results only for the case h;; := 6;;, where ¢ is the Kronecker
symbol and we refer the interested reader to [5] for the generalized method that
is able to capture the general case. In Section 2, we provide a general scheme
for proving the Hélder continuity of the solution (without proofs) and we restrict
ourselves to the simplest Uhlenbeck setting. Next, in Section 3, we mostly recall
two standard results for minimizers, namely the Caccioppoli inequality and conse-
quently the reverse Holder inequality. Section 4 is devoted to the estimates based
on the use of the Noether equation and can be understood as a generalization of
the monotonicity formula used in the theory of harmonic mappings. Section 5 is
devoted to the estimates based on the one sided condition that finally lead to the
proof of the VMO property of the solution u in Section 6. Finally, in Section 7
we give the complete proofs of Theorem 1.1-1.2 and Section 8 is devoted to the
Liouville theorem. Last, in Appendix we provide several examples of the structural
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assumptions on F' that leady either to the L° bound or to sharp bound for the
constant Cy, used in the assumption of Theorem 1.1 and in addition there is shown
that in case p = 2 the constant (), can be bounded in terms of other data.

We end this subsection by introducing all necessary notations related to the
localization procedure used further in the paper. Therefore, for any zo € R?, any
R > 0 and any Q C R, we define

Br(xg) := {z € R% |z — 20| < R}, B%(x0) := Br(zo) N Q,
Ag(zo) := Bar(zo) \ Br(zo), A (20) := Ar(z0) N Q
In addition, we introduce the cut-off function 75 as
Tr(s) == 7(s/R),
where 7 is a smooth nonnegative non-increasing function being equal to one in the
interval [0, 1] and identically equal to zero in [2, 00).
2. STRUCTURE OF THE PROOF IN THE UHLENBECK SETTING

In this section we provide a sketch of the proof in the simplest case when the
potential F' is given by

Fu, Va) = %a(u)[\VU\Q + 0]k

First, for sufficiently smooth solution or for any minimizer the Noether identity
has the form.

Lemma 2.1. Assume the hypothesis of Theorem 1.1. Then u satisfies

N d
Z Z / a(u)(|Vul* 4 60)P > Diu*Dju*D;p; dx
a=1i,=179
(2.1) N
- 1/ a(u)(|Vul? + 6o)? div p do = Z Z/ b*Djup; dx.
pPJa Q

a=1i=1
for all ¢ € D(;RY).
The identity (2.1) is further used to provide a weighted estimate. Setting

o xXr; T
i = W
n (2.1) where 7 € D() is a nonnegative function, we deduce

Lemma 2.2. Assume that assumptions of Theorem 1.1 hold. Then the solution u
in Lemma 2.1 satisfies

elVulPr  (|Vul? + 80) = |Vu - z|7

dzx
(2.2) a loftre e
(1+|VulP)(IVT|+7)
<C [p[d—p—1—c dzx.

Q

The approach is related to the monotonicity method from harmonic mapping
theory, however we work with the term that is related to the boundary integral in
the standard theory. Thus, setting in (2.2) 7 = 1 in a ball B(0) and 7 = 0 outside
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the ball Bog(0) and using the fact that the last term is of the lower order, we have
the weighted estimate (for some fixed 8 > 0 depending only on data)

2 =2 ) D
23) / (IVul® +60) 7" [Vu - | dmgc@a . / |Vul dx)_
Br B

|:17|d7pJr2 2r\BRr Ri-p

In an intermediate step one can establish an L°°-bound for u or an estimate
fQ el"l" dz < K which is not hard to prove, say by the Moser method - using
the additional coercivity (1.12). We also refer to appendix, where such a procedure
is described in detail for certain special form of F'.

In the second step we test (1.1) by ur and by using the one sided condition we
establish

Lemma 2.3. The solution in Lemma 2.1 satisfies

i 2 222\ -
(2.4) / \dei\ dx < C Rﬁ+/ (IVyl +50217 +|2Vu z||ul "
Br R B2r\BrR ‘x| P

with some B > 0.

If an L°°-estimate for u is available we conclude from Lemma 2.1 and Lemma 2.2
a non-homogeneous hole-filling inequality for the quantity

(IVul? + 60) "= |Vu - 2
|| d—p+2 ’

G =

which is of the form

Lemma 2.4. The solution u satisfies

(2.5) Gdr<C / Gdr| +KR°.
Br Bsr\Br

From [9] we know that this implies the logarithmic Morrey estimate

(2.6) Gdr < K|lnR|77,

Br
with some v > 0. This implies uniform smallness for [ g G dr as R — 0. Concern-
ing the proof of Lemma 2.4, we may replace in Lemma 2.3 Br by Bsg, estimate
the right hand side of (2.4) by using the Holder inequality and apply Lemma 2.2
to obtain Lemma 2.4.

Finally, from the uniform smallness (2.6), it is possible to derive a uniform es-
timate for the Holder norm of the solution provided it is smooth enough. This is
usually done by Campanato-like technique, which however cannot be used because
we do not have a proper comparison problem. Therefore, we present an alternative
way based on a global hole-filling technique. The starting point is the Caccioppoli
inequality, which may be derived from (1.1) by testing (v — ¢)7 and by using the
reverse Holder inequality and the BMO-estimate coming from (2.3)

Lemma 2.5. The solution u satisfies

|[Vul? 5 / (Vulp N\
< CR C d
/BR Rdip - " Bar Rdip !

+/ (6o + |Vul>) =" |Vu - 2 L
Byr\Br “T|d7p+2 -

2.7)
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Hence, combining (2.3) and (2.7) we can find K > 1 such that defining

VP K (6 + [Vul2) T [V - a2
A= [ [

and using the hole-filling technique we obtain

dx

Lemma 2.6. The solution u satisfies
1
(2.8) A(R) < CRP + SAQRR) + C(A(2R))'*5.

Finally, using the uniform smallness (2.6), we can iterate in (2.8) and observe
that

A(R) < CRY

for some v > 0. Consequently, due to the Morrey lemma we conclude
Corollary 2.1. The solution u satisfies
lul| » <K
cp

with uniform bound K depending only on the data.

We would like to finish this introductory part by recalling that for the simplest
prototype case, the more efficient method could be used leading finally to the full
regularity of the solution. However, the main purpose was to demonstrate our new
technique on the simplest most understandable case in order to simplify the further
reading of the paper.

3. CACCIOPPOLI INEQUALITY FOR MINIMIZERS AND ITS CONSEQUENCES

This section is devoted to the standard properties of minimizers and we refer
to [12] for detailed proof. Since we have in (1.1) the possible pollution term b, we
quickly repeat the standard proofs in this subsection.

Lemma 3.1. Let Q C R? be an open set, F satisfy (1.6) and b satisfy (1.20).
Assume that u € VVli’f(Q;RN) satisfies (1.22). Then there exists a constant C

depending only on ag, af such that for all xg € Q and all R > 0 fulfilling Bag(xo) C

Q we have
p —iian|P
3.1) / Vel 4o <ovc [u —asrl”
Br(zo0)

Rd+p

dx,
Bar(zo0)
where usp denotes the mean value over the ball Bag(zo). Moreover, if  is a
Lipschitz domain and u € Wol’p(Q; RN) then for all o € Q and all R > 0 such that
Bsgr(xo) € Q there holds

|ul?

Tt dx.

r
(3.2) / qui' de <C+C
Bg(x0)

B;zR(l‘O)
Proof. The proof follows line by line the proof of [12, Theorem 3.1, page 159].
Hence, for any t < s < 2R we find n € D(B,(x¢)) such that n = 1 in By(zo) and
V| < % Then we define ¢ := n(% — u) where
~ uop if BQR(ZE()) C Q,
= )
0 otherwise
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and use such a ¢ in (1.22). Consequently, we get (we omit writing xg in Bs(zg) in
what follows)

/BQF(u,Vu) dac§/BQF(ufn(ufﬂ),V(ufn(ufﬂ))) dx
(3.3) : :

+ b(x,u, Vu) - n(u — a) dx.
Bg
Thus, using (1.6) and (1.20) we deduce that

/ ap|VulP — af dr < Caé/ 14+ (1 =n)?|Vul? +|VnlPlu — a|P dx
B¢ Bg

+/ oy (14 |Vu)P~Hu — a| de.
B2

Hence, using the Young inequality to absorb the part of the last term to the left
hand side, using the definition of n we find that

—ap
/ Vul? de < C Rd+/ IVu\”dw+/ Al de ).
BY BY\BP B (5 —1)F
Thus, using [12, Lemma 3.1, page 161] we finally conclude (3.1) and (3.2). O

We end this short subsection be recalling the reverse Holder inequality which
directly follows from Lemma 3.1 and the Poincaré inequality (see also [12, Chapter
V]) and therefore we state it here without proof.

Lemma 3.2. Let Q C R? be an open set, F satisfy (1.6) and b satisfy (1.20).
Assume that u € W,oP(Q; RN) satisfies (1.22). Then there exist constants C,e > 0

loc

depending only on ag,af such that for all xg € Q and all R € (0,1) fulfilling
Bar(zg) C Q we have

|VulPTe e / |VulP Y
3.4 / dx <C+C dx
( ) ( Br(z0) R Bar(zo) Rl

Moreover, if Q is a Lipschitz domain and u € Wol’p(Q; RN) then there exists Ry > 0
such that for all xg € Q and all R € (0, Ry) such that Bagr(zo) € Q there holds

pte e P v
(3.5) / Vel 40} <cve / Vul? 4
B I Bfn(wo) R

4. WEIGHTED ESTIMATES BASED ON THE USE OF NOETHER'S EQUATION

|~

In this section we derive uniform a priori estimates for any sufficiently smooth
solution to (1.1), in particular for those satisfying (1.21). Before doing so, we recall
the following Lemma, which is related to Lemma 2.1.

Lemma 4.1. Let Q C R? be an open set and let F satisfy (1.5)—(1.6) and (1.19)
and b satisfy (1.20). Assume that u € I/Vlt)’f(Q;RN) is a weak solution to (1.1).
Then (1.21) holds provided that either w is a minimizers, i.e., it satisfies (1.22),
or u has the additional reqularity w € WP+ N WZPTH(Q;RN). Moreover, if u €
Wy P(GRY) and Q € CY1 then (1.21) holds for all ¢ € COY (G RN) such that
w-n =20 on 0N, where n denotes the unit normal vector on 0S).
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Proof. We do not provide the proof here but refer to our previous results [4, 6],
where Lemma 4.1 is proved in detail. ([

The next step is to deduce a weighted local estimate from (1.21). Thus, we intro-
duce a generalization of Lemma 2.2 based on the assumptions (1.13), i.e., p-growth,
and (1.17), i.e., the spitting condition. For simplicity (and as was announced in the
introduction) we focus only on the case, where hy,, = 6, in (1.13) and we refer
the interested reader to [5] for details with general h.

Lemma 4.2. Let Q C R? be an open set, F satisfy (1.5)—(1.6) and (1.13)—(1.15),
(1.17)~(1.19) with 64 <1 and b satisfy (1.20). Then there exists Ry > 0 such that
for any u € Wllo’f(Q;RN) satisfying the Noether equation (1.21), all v € [p,d], all

xo €  and all R € (0, Ro) such that Bag(zo) C © we have the following uniform
estimate

/ (= p)Vul? (=)0 + |[Vul) "= |(x — 20) - Vuf* -
(4.1) Br(o) |x|d77 |x - xo‘d*“/+2
[Vl

< CRVPHA 4 O —
AR(ZEo) |£L'—£E0‘ v

dx,

where C depends only on ag,of,d4. In particular, we can conclude
(4.2)

Y c /. ; [Vl
< — 0))%A .
/mw T ao R S 5 | st (o, O )
and
(4.3) lulsaron.. < Clluly)-

Moreover, if 2 € C*' and u € Wol’p(Q;RN) then for arbitrary zo € 02 and arbi-
trary R € (0, Ry) there holds

(v =p)IVul’ | (d=7)( + |Vul*)*T |z —z0) - Vu*
Q |$|d7'y |x —x ‘d77+2
BR(ZU) 0

(4.4)

p
< CRVPHA | (O / VulP 4,

AL (a0) |7 — @]

Proof. We give here the proof only for the sake of completeness. Therefore we
proceed here only formally and for the rigorous justification we refer to [5, 6].
First, to simplify the proof we assume that o = 0. For others xg the proof is the
same. The proof of (4.1) is based on using

o) i TR0

el

as a test function in (1.21). Note that R > 0 is assumed such that ¢ has a compact
support in Bog C Q. By a simple computation we observe that

Doy = di; T (|%]) - )fﬂiﬂfﬂﬁﬂxl) wixyh (o) mh()
(4.5) T i o] d=+2 B
. divy — 7r(|z]) +p7§_1(|ﬂfl)7§z(lx\)

|z |zt
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Next, we evaluate all terms in (1.21) with our 1. To shorten the formulae we omit
writing the dependence of 7 on |z| in what follows. Hence, using (4.5) we get that

-1

P
VTh ™R "R
F(u,Vu)<| - 7—}— Fl=s 1) dx.

Similarly, using (4.5) again and using the splitting assumption (1.13) we get that

d N
/ Z Z an" (u, VU)Dﬂbijua dx
Q

i,j=1a=1

/ZZF (u, Vu)D a|§| pvdz

i,j=1a=1

P -1
TiTiTR ZT; xJTR TR
/ E E F ’LL V'LL (( _’7)‘x|d,py+2 —-p |l’|d ~+1 ) dx

i,j=1a=1

:/ W (u, Vu) - Vury, I

|| =

(4.6) Aﬂmwmm¢mz/

Q

N AaﬁuVu (x - Vu* z - Vu
/2: )( )

—1
F=Te ((d—’y)rﬁ — plz|Th 7'1’2) dx

aﬁl

p —-1_
TiTiTR -szJTR Thr
/ § E HO( u CU (( —’V)|x|d_,y+2 - D ‘ |d | ) dx.

i,j=1a=1

Thus, using these identities in (1.21) and moving the terms with corresponding
signs on the one side we deduce that

a B
B o8 (1 x~Vu )z - Vu )TR TR
of, 3 S
F(u,Vu)Th,
—|—’y/ dx
o |zt
N « BYLP
B af (- Vu®)(z - Vu)p,
+d-) [ 3 AT
(4.7) o
:/ Fy(u,Vu) - Vurp, — pF(u, Vu)rh g
) \Wﬂ |zt

P -1
a LT Z; ijR Tr
/ E E H U Vu (( ’y)|x‘d,7+2 —-bp |I|d 41 ) dx

1,j=1a=1

/ ,u, Vu)(z - Vu®)1h
Z da.
| 4=

First, since 7 is nonnegative and non-increasing we see, after using (1.15), that
the first integral on the left hand side is nonnegative and therefore we neglect it
in what follows. Next, to bound the first integral on the right hand side, we use
(1.17)—(1.18) for the first term and (1.6) for the second one, together with the fact
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that |75 < C/R and that Vg is supported in Ag. For last two integrals we use
(1.14) and (1.20) to get the resulting inequality

F(u,Vu)Th
T@ afi

9 @055 o]
F(u, Vu)tp (1+ |Vul|)?
*p/ P T
AR
By Ll P Y, 1
Q 2|4 o |zt

Thus, absorbing the first integral on the right hand side by the first one on the
left hand side, using (1.6), (1.15), the fact that v > p and the properties of 7 we
conclude the final formula

P 2252 . . 2
(v =) /| ul TRd - ’y)/ (0o + |Vul*) = |z - Vu| i
Br

(4.9 ||d= ||d=7+2
p p—6a p-P
<C m+/ VulP oy [ Nl NVl
Ap lz]dY o |z]dy o |zt

Next, to estimate the third term on the right hand side, we assume for simplicity
that 4 < 1 and with the help of the Young inequality we get

p—35
Vup=0a [ |Vulp e 1
lzjd=  \ |z|d—r—0a 2| 5a(d=7+p=54)

P
[Vul? 1
S o e

Hence substituting this relation into (4.9) and assuming that R,d4 < 1 we deduce

[VulPrh (0 + | V)7 |z - Vau?
(v — p/ P dx + (d — ) Pz dz

_ VulP |VulPr?
Y—p+6 R
SC(R A+/ |x|d7d+/||dMAd

Finally, we find the maximal radius Ry such that for all R < Ry we have that
CR%* < §,4/2. Consequently, for all v > p+ §4 we can conclude from (4.10) that

(4.10)

|VulP TR
(4.11) o e
' —p4d |Vu| 5 |Vu|pTR
<C(”"7A+/ Jal ™= )*CRA/|ﬂdwd

which implies (by absorbing the last integral to the left hand side) that for all
v >p-+da we have

p
(4.12) VulTh 4 < C(54) (RW—I’”A +/ [Vl dx).

o |z4 ap |2l
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Consequently, using this estimate and the fact that v > p we deduce that

|VU| 7-R y—p+26 |vu|p
(413) Wd <C R A+ ARmd{L‘ .

Hence, substituting this relation into (4.10) we derive (4.1).
Next, we show the estimate (4.2). We start with the following observation
Y VulP=2|Vu - (z — xo)|?
(4.14) / | du| de <C  sup / [Vl |V d(_x +2x0)| dx.
Br(o) B7 20€B2r(0)  Ban(ao) | = 0|"7P

Indeed, for any x € B;(0) we have the point-wise estimate?

2 |VU ) - (z —2¢)]
Vo(a \<Z —ep

where e; denotes the unit vector in the i-th direction. Consequently, we get

[Vo(z)[P~?Vo(z) - (z — 2¢;)?
4.15 / Vo(z)P < / dzx.
(4.15) B1(0) | ) Z B1(0) |z — 2¢;]?

Next, for a given u € Wl’p(BgR(O)) we define v as
v(z) := u(Rx)
and by using (4.15) we deduce that
(Rz)[P~2|Vu(Rz) - (z — 2¢;)|?
(4.16) / |vu Rx |p dr < Z/ |VU xz | |VU( ) ( € )‘ dr
B1(0) B1(0)

|z — 2¢;]?

and by standard substitution and dividing by R%~? we get that

[Vu(z / |Vu(x)|P~2|Vu(z) - (x — 2Re;)|?
<
/BR(O) Rd p d Z Rdfplx — 2R€¢‘2 du

p 2 _ 2
<ZC / Vu(@)[P~*|Vu(z) - (x — 2Re;)”
Br(0)

|z — 2Re;|4—P+2

(4.17)

and (4.14) follows. Since

VulP=2|Vu - (z — z0)|?
[ e, ]
Bun(wo) |x — xgld—P BUYHIS50) (4 BUYHI>40} (4,)

(8o + |Vul?) "= |Vu - (z — 20)|?
| —:1c0|d*1’Jr2

dx

< C(p)SERP + C
Bir(zo)
(60 + |Vul?) = |Vu (x — o) |?

P pp
< C(p)stR? + C e

Bp= (o)
where R* is the largest ball such that Bags(xg) C Q. Consequently, using this
estimate in (4.14) and applying (4.1) with v = p we deduce (4.2) with v = d. To
prove it for general « it is enough to combine (4.1) and (4.2) once again. The
estimate (4.3) is the an easy consequence of (4.2) and the Poincaré inequality.

dx,

2t is a consequence of the fact that for any z € B; we have |(z — €;) - (x — ;)| <(1—=9)|z—
eil|lz — e;| for i # j and therefore {z — e;}¢_; forms a basis.
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The relation (4.4) is derived in a similar manner but one need to correct a test
function in such a way that the normal component is zero on 9. Such a procedure
is easy in case of the flat boundary, see [5], while in case of general boundary it is
more technical. Therefore we refer the interested reader to [6] where the problem
is solved for p = 2 and for general growth condition we refer to [4]. O

5. USE OF THE ONE-SIDED CONDITION

This section is devoted to the second fundamental estimate which is a conse-
quence of the one-sided condition (1.7) and which play the important role in the
proof of the VMO-property and also replaces the standard Caccioppoli inequality
from Section 3 by its another version more suitable for proving the main result of
the paper. Thus, the key lemma of this section, which is related to Lemma 2.3, is
the following.

Lemma 5.1. Let Q be an open set, F' satisfy (1.5)~(1.7), (1.13)—(1.15) and (1.19),
and b satisfy (1.20). Then there exists a constant C > 0 depending only on ayg, o
and 64 such that for any u € VVl PO RY) solving (1.1), any zo € Q, any R > 0
such that Bag(zo) C 2 and any ¢ € RY the following inequalities hold

IV“‘pTRd <CR”+C/ u_c‘p+|u_c|m .
(5.1) Q Rd-p Ban (o) Rd—p Rﬁ""d_P
| U(u7vu) - C o -
+C Ban(o0)  Rd-p dx + CIR,IOYR,@»O ,
(5.2) o 2R&P P = ey
— F (u vu) (u — C)T
a 1—a w(u, »
+CIR,.’E0YR,$O *L Ti-p dr,
where
Ir ::/ (60+|VU|2)PTQ|VU~(;E—950)|2 i
,T0o Ar(zo0) |z — zq|d—Pt2 )
—c|P
(5.3) Yha ::/ ‘U C‘ iz,
0 Ban(x0) Rd

. p 1
a:=mm|——:,— ).
p+2p

In addition, if Q is Lipschitz and u € WyP (Q; RN) then (5.1)~(5.2) hold with ¢ = 0
for any xo € RY and any R > 0 after redefining u = 0 outside €.

The next result is the so-called Caccioppoli inequality, where however the better
regularity of u is required a priori.

Proof. For simplicity, we show the result only for zg = 0 and in what follows we
omit writing xo. We test (1.1) by

(u— )i (l2])
1+ elul

)
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where € > 0 is arbitrary and 7 denotes the standard cut-off function. Note that
such a setting is possible since the test function is even in L* and vanishing at the
boundary. Hence after a standard manipulation we get the following identity

/ (Fy(u,Vu) - Vu+ Fy(u, Vu) - u)Th i
Q

1+ elul
:/ b(-,u, Vu) - (u—c)1h dx—!—/ Fy(u,Vu) - c15, i
Q 1+ eful o l+ey
(5:4) (u, Vu)(u® — c®)x;7h g
iTR TR
— dx
p/zz |x| 1+e|u|>
a=11=1
Vu) c®eD;|ul?
/ZZ (u, ul JeDjlu|Tp, i
= (1 + eul)?

Our first goal is to let € — 04. Note that in all terms on the right hand side it is
possible by a simple use of the Lebesgue dominated convergence theorem and by
the use of the growth assumptions (1.19) and (1.20). For the term on the left hand
side we use the one sided condition (1.7) to deduce that

(Fy(u, Vu) - Vu+ Fy(u, Vu) - u)7h S ao (o + |Vul?) = |Vu|2TR —a5Th

(5.5)
1+ elul - 1+ ¢lul

Thus we see that the integrand in (5.4) is bounded from below and therefore we
can use the Fatou lemma letting ¢ — 04 we deduce that

[ ol + Va5 (Vu e, — agrl do

Q

< / (Fy(u, Vu) - Vu+ F,(u, Vu) - u)7h, de
Q

< / b(-,u, Vu) - (u — ¢)7h dz Jr/ Fy(u,Vu) - 7y, dz
Q Q

1_y
_p/z , Vu)(u® )ZTRTRd

a=1i=1 |l’|

Next, we split the above inequality onto two cases, the first related to (5.1) and the
second related to (5.2). Hence, using (1.17) and a simple algebraic manipulation
together with the properties of 7, we get the following inequalities

/a0|Vu|p7'p SCRd+/Fu u, Vu) - c1h dx
Q

N (u, V) (u® — )7l 1
/b u, Vu) - (u— )1 ZZ 2] dx
which corresponds to (5.1) and

/a0|Vu|pr<CRd /Q Fy,(u,Vu) - (¢ — u)th dx

\Y
N 1
Vu) i 4
/b u, Vu) - (u— o)1 g (u, Ve (u® = )ity TRdw,

a=1i=1 |$‘
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which is related to (5.2). Next,we focus on the estimate with b. Thus, using (1.20)
and the Young inequality, we get

/b(',u,Vu) (u—c)p < C/(1+ |Vul)P~u — e|rh dx
(5.9) ¢ N @
< —O/ |VulPrh dx—i—CRd—I—C/ lu — c|P7h.

4 Jo ' Q /

Finally, we focus on the term with F,. Using the assumptions on F;, (1.13)—(1.14)
and the properties of 7 we observe that

pFye (u, V) (u® — ) amh
%> e “

a=11i=1
(5.10) < 0/ (3o + |Vul?) "= |Vu - @|u — cl7h ! de
T Jag |z|?
p—1-8a1,, _ p—1
Lo (1+|Vu|) lu — c|p i,
AR ||

Next, for the second integral, we use the Young inequality to deduce that

1 1
(14 |Vu|)P~t 5A|u—c|7'§

AR |z

C dx

(5.11)

|u—c|ﬁ

y
Bor R4

< %/ IVulPr? + CRY + C dz.
Q

Consequently, we substitute (5.9)—(5.11) into (5.7)—(5.8) and divide the resulting
inequalities by R?~P to observe that

p 2\ 252 . PN
/|Vu| T de < C’RerC’/ (00 + |Vul?) = |Vu - z||u — c|T], I
Q Ar

(5.12) R ol
o lu—cP  |u—¢| oA F,(u,Vu)-c d
+ Bon Rd—p Rﬁ-&-d—p Rd—p o
and
p=2 _
B00VUPT e o [ G0t VU VU allu— e
iy T - .
. lu—-cP  |u—c| oA Fu(u,Vu) - (u—c)7h
+C R p - dr — Rip R dx.
Bar(xo) R1+34 Q

Thus, comparing (5.12)—(5.13) with (5.1)—(5.2) we see that all we need is that

(80 + |Vu[2) "= |Vu - zfju — |75}
|x|d7p+2

C
(5.14) Ar

O40|vu|p7—lpz ayl—a D

dx
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where Yg, Ir and « are given through (5.3). To prove (5.14), we first use the Holder
inequality to observe that

(0 + [Vul?) =" |[Vu - a|u — |75
|+

C dx

(5.15)

(p72)p

1
<CY% (00 + |Vul?) \Vu - z|? ™ i g .
=~ R An ‘fE|d pp’+2p’

Finally, we estimate the last term. First if p € (1,2] we have that p’ > 2 and
consequently

/ (50+|Vu|) |Vu m\p T da
AR

|x|d pp’+2p’

(5.16) B (60 + |[Vu?) =z |Vu a:|p 2|Vu - z|*h i
’ B An || d—PP'+2p'

P

= Ig.

</ (80 + |Vul? )7”“‘ |Vu a:|2
=/,

‘1;|d pp’+2p'—p'+2

Hence, substituting this inequality into (5.15), we see for p € (1,2] the inequality
(5.14) is valid and therefore the proof is finished for such a range of p’s. Next, we
focus ont the case p > 2 (and consequently p’ < 2). Using the Holder inequality we
get that

/ (60 + |Vu?) = |Vu x|p T i
A |x|d pp’+2p’

»’
2

p—2
o[ (GotIVuP)ERN T Go+ [Vu) T Vua ) T
= Ja, [ @ [P F2 ’
- (50+ \Vu|2)57£ p 2(17:1) I%/
=\, el v "

pP—2
|vu|p7-l’ 2p-0 _p/

(5.17)

Finally, substituting this inequality into (5.15) and using the Young inequality we
observe that

(8o + |Vul2)*=" |Vu - z||u — c|r57"

C » || +2 dx
p—2

1 VulPrf O\ s

<CYy (RP+/ i dr ) Iq

|Vu|pTR e

<CRP 4+ — / Ti-p dz + CYg 1’%’
and by using the definition of a in (5.3), we see that (5.14) follows and thus the
proof is complete. O
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6. SMALLNESS OF THE p-DIRICHLET INTEGRAL - VMO PROPERTY

This section is devoted to the first essential estimate - the smallness of the
Dirichlet integral, which plays an important role in further analysis due to the
dependence of F' on u. Note that in case that F' is u independent such an estimate
can be avoided and one can proceed directly as was shown in [5]. The first result,
which is related to Lemma 2.4, is focused on the case when a weak solution satisfies
also the Noether equation (1.21) and we control the explosion rate of the mean
value by (1.23).

Lemma 6.1. Let Q be an open set, F satisfy (1.5)—(1.7), (1.13)—(1.15) and (1.19),
and b satisfy (1.20). Then there exist constants C, Ry > 0 depending only on
o, 0,04 and Ciy such that for any u € I/Vllo’f(Q;RN) solving (1.1) and satisfying

(1.21) and (1.23), for any zo € Q and for any R € (0, Ry) such that Bag(xo) C 2
the following estimate holds

p Clnln|In R,. P
(61) / |Vd’li| dr < CR(SA 4 n 1’l| n | |quf| ’
Br(zo) Re=p 1H1H|1HR‘ Br,, (z0) R**p

where R is the largest number such that Bag,, (xo) C Q.

Proof. We again prove the result only for g = 0 and omit writing the dependence
on xg in what follows. First, since u satisfies the Noether equation (1.21), we can
use Lemma 4.2 and setting v = p in (4.1) it follows that

_ [ o +|VuP) |V o 5 |Vul?
(6.2) ag = /BR o2 der <CR* +C o, R dz.

To estimate the integral on the right hand side, we apply Lemma 5.1, in particular
we use (5.1) with ¢ = 0 to conclude

V)P ) P | Ju| T . vl
(6.3) /B gy WSCREC [ i e et OV,

where the Ip, Yr and « are defined in (5.3). To estimate the term with |u|?, we
use the Poincaré inequality to conclude

[Vul?

— +0Rd|U4R|p,
4R Ri=p

/ [ulP de < C lu — ugr|? + CRusr|P < C’Rd/
Bur Bar B

where usr denotes the mean value of u over a ball Byr. Similarly, with the help of
the Holder and the Young inequalities we also deduce that

/ W[5 dr < C [ |u— war| T + CRYu| 57
Bir Bsr
s g ﬁ 3
< R ( [ - u4RP) + CRYus | ™57
Bur

P\ T4
< CRY (/ gdup) " CRusp| ™55
Buyr
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Thus, inserting these two estimates into (6.3) and using the definition of Yz we get

|VulP / |Vulp o4 ( / vu|p>1+%A
dx < CRP + CRP + CR™a
/BzR Ri-p Bsr Ri-p Byr Ri-p

pd P
(64) —|—C'RP|U4R|I)—|—C'Rﬁ|U4R‘m

|vu|p 11—«
+ OIS, (/ + lugrl? )
2R Ban Rd_p

Next, we find the largest R, < % such that Bag, C 2 and denoting

(6.5) K =

d—p
Br, 1t

we can use the estimate (4.2) to substitute wa ‘RV;LJ: by K in (6.4). In addition,
we use (1.23) to substitute the mean values in (6.4) and using also the definition

on « (see (5.3)), we finally simplify (6.4) in the following way

p pd ps
/ Val’ 1 < CCP|In RPR™ 5 + CRT4 K
+ OISR (14 K)' ™% + CCP (Iyr|In R|)*
< CRP(14 K)+CIgy (1+ K)' ™™ 4+ C (I In R|)*

with some C, 8 > 0 depending only on data, i.e., on ag, af, dg, Cin and |©2|. Then
we combine (6.2) and (6.6) and assuming that S is chosen such that 5 < d4, we get
ar < CRP(1+ K)+ CISs (1 + K)' ™ 4+ C (I,g| In R|)*
C(1+K)
|In|In R|| ™=

(6.7)

<ORP(1+K) + + Irg|In|In R|||In R|,

where we used the Young inequality. Finally, using the definition of Isr and the
fact that R < % we get

C(1+ K)

6.8 < ———
(6.8) R_|1n|1nRHm

+ | InR||In|In R||(asr — ar).

Consequently, by a simple algebraic manipulation we deduce that

[In R||In|In R)| C(1+K)
aR < 4R o 17
14 |InR||In|ln R|| |In R||In|In R||T—=

(6.9)

Before, we continue we show that there exists some R, > 0 such that for all
R € (0, R..) we have

[InR||In|InR|| |ln|ln|lnR|||
6.10 = .
(6.10) IR [ R||In | R[[ [In|In | In 4R||] =

To prove it, we first consider R, < i so small that In|In4R| > 1. Then to prove
(6.10) it is equivalent to show that

(6.11) [InR|In|InR|(Inln|InR| —Inln |[In4R|) <Inln|In4R|.
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Since
In|In R| In|InR| —In|In4R|
Inln |1 —Inln|In4R|=In( ——— ) =In|(1
nlnflnf] = Inln |In 47| n<ln|1n4R|> n( T a[ar
=nl|1+ 111(11;41}%) =ln(1+ In (1+ 1111]1*41}1%43)
In|In4R)| In|In4R)|
In4
| 1+1n<1+|1n4R\> C
=In
In|ln4R| ~ |In4R|In|In4R|’

we see that to prove (6.11) it is enough to show that
C|InR|In |1In R
|In4R|1In|In4R)
But since the left hand side is bounded and the right hand side tends to infinity
as R — 04 we get (after a possible redefinition of R..) that (6.12) is valid for all
R € (0, R..). Hence, multiplying (6.9) by Inln|In R| and using (6.10), we observe
C(l+ K)Inln|In R
|In R||In |In R||T>= **
C(1+ K)Inln|In R
|In R||In|In R||T=a T

C1+K)
|[In R||In |In R||1+e

(6.12) <Inln|ln4R|.

Inln|InRlar < grlnln|lndR|asr +

(6.13) <Inln|In4R|asr +

<Inln|In4R|asr +

for some € > 0 depending only on data. Finally, since ), W < 00 we can
iterate the inequality (6.13) and show that
Inln |In R, | C(1+K)
| R| T Inln|In R[]
Hence using the definition of ag and (4.1) to bound the term on the right hand
side we conclude
2\ 22 2

(6.15) / (00 + |[Vu|?) = |Vu -z de < Clnln|In R..|(1 + K)

By |z|d—p+2 Inln|In R|

(6.14) ar <

Finally, using the same argument as before, namely

p 5 2\ 22 2
/ W;f' dz < CRP +C sup / (Oﬂvu‘d), ;'W g,
Br R p roEBR BQR(I()) |'CL.| p

we conclude (6.1) from (6.15).

(]

The next result is of a stronger character than the previous one. In fact we do
not need a priori knowledge about the possible explosion rate of mean values of u
as in (1.23) but we replace it by a more restrictive assumption on F,, (either (1.24)
or (1.25)) and it can be applied only for minimizers.

Lemma 6.2. Let § be an open set, b satisfy (1.20), F' satisfy (1.5)-(1.7), (1.13)-
(1.15), (1.19) and let one of (1.24) and (1.25) hold. Assume that u € W;"P(Q; RY)

loc
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is a weak solution to (1.1) that in addition satisfies (1.22). Then for all xg € Q
there holds

[Vul?

(6.16) limsup/ — dz = 0.
R0, JBp(ze) BIP

Proof. For simplicity we consider only the case xg = 0 and assume for a contradic-
tion that

. |Vu(x)Prh,
6.17 lim su / —— 2 dr=L>0.
(6.17) Ra0+p o Ri

First note that . < oo which follows from Lemma 4.2. Next, we choose a not
relabeled subsequence of R’s for which the L is attained and in what follows we
consider just this sequence (that may be again changed by taking a subsequence).
First, we find u

. . 1
%= lim usp := lim u dx,
R

=0 R—0 | Bag| Bon

where we allow the values +00. Next, we define a vectors cg € RY as follows
0 if u® € R,
(6.18) ch = {

usp if 4% = +oo.
Note that it directly follows from this definition that there exists C' > 0 (depending
of course on xg and u) such that

(619) |u2R_CR| S C.

Consequently, with the help of the Poincaré inequality and Lemma 4.2 we deduce
that for all Bog C Q)

_ p _ p + — P
/ lu ZR| dr < C |u — uzR] d\qu cr| s
Bar R Bar R

(6.20)

[Vaul?

§C+C’/B2RRd_p de < C.

Next, we apply Lemma 5.1. First, it follows from the uniform bound (1.21) that

Ir —0 as R — 04,

where Iy is defined in (5.3). Next, we set ¢ := cg in (5.1)—(5.2), and using the fact
that Y < C' (which follows from (6.20)) we can let R — 04 in (5.1)—(5.2) to arrive
to the following inequalities

Fu ) : P
(6.21) L< Climsup/ (u V:) CRTR iz,
R—04+ JBap Ra-p
2F, (u, (u— b
(6.22) L<timsp— [ 2Rl TU o0 g,
R—04 Bar agR*—P

Next, using the definition of cgr, we see that (6.21) reduces to

F o a. P
L<Climsup / Fue (u, VWJu'ry
Bar

6.23 R0+ o; ga=zoo rer
(0:29) Fu (0, V) [0 — |

+ C'lim sup Z /BQR Td—p x,

R—04 a; u*==%o00




HOLDER CONTINUITY FOR SOME NONDIAGONAL SYSTEMS 25

while from (6.22) it follows that

2F e (u, V
L < limsup / o du)u Th dx
R0, . ua#iw Bar agR*—P
(024 P (1, V)0 — ug
+ C'lim sup / un ud_u 2Rl gy,
R—04 a;u®==%00 Bar ReEp

Hence, if F satisfies (1.25) we derive from (6.23) that

. a(u®)[VulP(1 + |u® —ugg])
L < (Climsu /
(6.25) < Climsup a;a;ﬂo - Ti=p

In case F' satisfies (1.24), we can absorb the first term on the right hand side of
(6.24) by the left hand side and we again deduce the inequality (6.25).

Thus, it remains to discuss the behavior of the term on the right hand side of
(6.25). For this purpose, we use the fact that w is a minimizer. First, we define

(6.26) vr(z) := uw(Rx) — cr for z € By
and using the substitution theorem we have the identity
, a(u®)[VulP(1 + [u® — ugg|)
L <limsup 72 /BQR Ri—p

R—04 a; U%==4o00

(6.27)
= lim sup E / a(v + %) |[VurP(1 + |vg|) dz
B,

R—04 a; u*==%o00

For the last integral, we first deduce a priori bound for vg. Hence, using (6.20),
(4.2) and the substitution theorem we see that

/ lvg|? dz < C.
B>

Moreover, using the substitution theorem again and the fact that u is a minimizer
and therefore satisfies the reverse Holder inequality with some 0 < & < d — p from
(3.4), we find that for all B,(x¢) C B2

/ |Vog|PTe do = Rp+5/ |Vu(Rz)|PT dx
By.(z0) Br(zo)

+
_ dRp+a |Vu|;v ° d
=T Thdod X
Brr(Rzo) Rer
p+e

p P
(6.28) < CrdRprte 1+< / [Vl da:)
B

dpd
2rr(Rx0) Rér

pte

14 P
<Crtr=e 14 / 7|Vud|7 dx
Ba gy (Rxo) (RT) P

S Cf7,cl—1)—57

where for the last inequality we used (4.2). Consequently, in addition to (6.27) we
have the following uniform estimate

(6.29) lvrllBao + |vrll1pre < C.
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Therefore, using the embedding BMO(Bs) — L%(Bs) valid for all ¢ < oo, the
uniform bound (6.29) and the Hélder inequality, we see that (6.27) implies that

(6.30) L < Climsup Z la(vg + c%)Hz?p

R—04 o;u*==%00

However, from the compact embedding we have that there exists v € W1P(By; RV)
such that

VR — U almost everywhere

and it also follows from the definition of ¢ that
g — £oo if u® = +o0.
Hence, using the assumption on a we observe that
a(vk +cx) = a(vtoo) =0 almost everywhere in By

and consequently since a is a bounded function, we can use the Lebesgue dominated
convergence theorem and we see that the right hand side of (6.30) is zero, which
however contradicts (6.17) and therefore the proof is complete. (]

7. HOLDER CONTINUITY OF SOLUTION

This section is devoted to the proof of the Holder continuity of the solution w,
i.e., to the proof of Theorems 1.1-1.2. We start this section with the proof for
minimizers.

7.1. Proof of Theorems 1.1-1.2 for the case 1). The proof is based on the
method developed in [5] and a proper VMO estimates stated in the previous section
which will finally imply the Holder continuity of any minimizer, i.e, when 1) is valid.
In addition we skip the proof of the boundary regularity here and we refer to the
next subsection, where it is proved for u being even non-minimizer. We prove the
result only for zp = 0, i.e., we show that there is 8 > 0 (depending only «ag, o, 04
such that for some Ry > 0 any minimizer belongs to C#(Bg,).

First, since we consider the case 1), we can apply Lemma 6.2 and we see that
for 6 > 0, that will be specified later, we can find R; > 0 such that By, C Q and

p
(7.1) / |V;ﬁ'p dz < 6.
Bry 1

Consequently, using (4.2) with  := Byg,, we find that for all zg € Br, and all
R € (0, Ry), we have

|VulP 5
(7.2) / U g < C(RA +6).
Br(zo) B7P

Hence, we can fix Ry (still depending on §) such that for any zy € Bg, and all
R € (0,2Ry), we have

p
(7.3) / NVl 40 < o
Br(zo) R
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Next, in order to shorten the formula we denote

5 2\ 252 o2
Z bz ::/ o + [Vul') :Jvu 1 g,
’ Br(zo) |z|4=P

VulP
Z% = / | da.
R,xq Br(zo) Rd—p

The starting point of the proof is the Caccioppoli inequality (5.2) with

C = uBQR(g;O).

Note that by using the Poincaré inequality and in view of the previous definition
we have that

—_ 71 1 2
IRJO - Z2R,$0 - ZR,LEQ’ YR7$O S CZR,IQ'

Moreover, by using the Poincaré inequality, the first integral on the right hand side
of (5.2) is a lower order term simply estimated by R%4 and therefore using also the
growth assumptions on F, (1.19) the inequality (5.2) reduces to (with a € (0,1)
defined in (5.3))

le%,zo S CR(SA + C (Z21R,z0 - le%,azo)a (ZSR,mo)l_a
(7'4) +C \VUWU - ﬂB’zR(Io)l de.
Bar(zo) Ri=p

First, we focus on the last term. Using the Holder inequality and (3.4) (with some
¢ depending only on data) we have

/ |Vu|p|u - aBzR(%)' d
Bar (o) Ré—p

7.5 pte ﬁ — pis wie
(7:5) <RP / % dx / [v uB”Z(wO) | dx
Bar(z0) R Bar(zo) R

<C(R + ZZR,xO)(ZgR,xO)’Y”uH}B_J\}O < OO (RP + ZiR n)s

where the last inequality follows from (4.3) and (7.3) and v > 0 depends on ¢.
Hence, substituting this into (7.4) and using the Young inequality we obtain (after
possible extension of integration domain in Z)
1
ZIQ:C,QZ(] S CR&A + (g + Cé)ZzR,ZL’O + C(ZiR,I() - le%,ivo)‘

At this point, we finally fix § to be sufficiently small (depending on data and
consequently also on ¢€) such that we get

Z2
(7.6) T4y < CRO 4+ =020 4 O(Zlp y — Zhy ).
Next, using (4.1) with v = p and after a possible division by some constant we get
Zin
(7.7) C™'Z} . < OR% + =

Hence, summing (7.6) and (7.7) we obtain

22
(78) Zwy +(C+C N2y, < CRM + =050 + Oy,
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and consequently, defining

0 a 1 ¢ <1
=max | =, ————
2°C+C! ’
WR»JUO = Z122,x0 + (C =+ 071)211%7920,
we get
(7.9) WR,IO < CR(SA + 0W4R,m0~
Thus, we can find § > 0 such that
pB<da,  4PPH<1

and we can rewrite (7.9) as (with some w > 0)

WEg,z, < CR” + WaR,z,

RpB (4 R)pﬁ ’
which after a simple iteration leads to the estimate
WR7$0 W4R07w0
(7.10) B SC<1+RSﬁ < C(Ry).

and the Morrey embedding finishes the proof of u € C#(Bg,).

7.2. Proof of Theorems 1.1-1.2 - the case 2). Here we derive uniform esti-
mates in case 2) is valid. In this section we prove everything up to the boundary
and it will be evident that one can mimic such a procedure also for the proof of
Theorem 1.2 - the case 1), which was missing in the previous subsection. The
proof is again based on the paper [5] and on the VMO property of the solution
u. However, since we want to use a supremum argument, we need to assume the
continuity of the solution a priori, which however do not affect the final uniform
estimate which will depend only on Cj, and ||Vul|,. In addition, it will be clear
from the proof that near the boundary the estimates are independent of Cy,, which
is caused by the fact that u is fixed (and smooth as it is assumed to be equal to
zero) on the boundary.

The proof is split onto two parts. First, we show that any continuous solution
is in fact Holder continuous, but with all estimates dependent on the modulus of
continuity of u. Next, having such Holder continuity, we almost repeat step by step
the same procedure but finally we use a supremum argument - for this we however
need to know Holder continuity a priori - and get desired estimates. Before we
start, we recall the notation used in the previous section, namely

P (%0 + [Vul?)"=" |Vu-af?
B0 ) o) |z|d—pt2 "
p
2122 xo ::/ |vdli| dm?
' Br(xo) Ré=p
Whizo = Z 4y + (C+C )25 .-

First, we derive the global VMO-like information. Therefore for any xy € 0f), we
use (4.4) with v = p and find C' > 0 such that

22
(711) CilZIl%,xo < CR&A + %_
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Similarly, using (5.1) with ¢ = 0 (note that it is a correct setting since xo € 92),
we deduce that (using also the Young inequality)

Z% . < COR% 1+/ [l g
o Ban(wo) B

11—«
|ul”
+C (/ frad (Z3R2y — Zhomy)" -
Bar(z0)

But since xg € 99, Q € C%! and u = 0 outside Q we can use the Poincaré inequality
to conclude that

(7.12)

/ ul” de < CZ3p . <C
Bar(zo0) Rd B e

and substituting this into (7.12) we get after applying the Young inequality

Z}
(7.13) Ty < CR 4+ =550 4 O(Z3p 4y — Zhoa,)-

Thus, summing up (7.11) and (7.13) and using the notation from the previous
section, we obtain

(7.14) Whao < CR + 0Wag 4y,

which finally gives that there is 8y > 0 (depending only on g, ag,da, 2 and Rp)
such that for all R € (0, Ry) and all 2y € 9Q we have
Wg. Cdip—

(7.15) o < C(L+ Ry ™77 | ul ).
Note here, that at this estimate there is no dependence on Cj, and therefore for
the boundary regularity problem stated in Theorem 1.2, we restrict ourselves to so
small neighborhood of 92 such that (7.15) implies the smallness of the Dirichlet
integral near the boundary.

Next, we focus on the estimates in the interior of 2. Let 2o € Q and R € (0, Ry)
be arbitrary. Our aim is to show a uniform variant of Lemma 6.1, i.e., that

C(ag, af,64,Cn, Ro)||VulP
(7.16) 7. < (0, g, 04, Cns Ro)|[Vulh
o Inln|In R|
To prove it, we first consider the case when Bag(xg) ,@ Q. In this case, we can
surely find x; € 9Q such that Br(z¢) C Bsr(x1) and consequently
(7.17) 2}y < CZ25 ., < CRPP(1 4 Ry4HP7PP0 | wy|p),

where for the second inequality we used (7.15) and we see that (7.16) follows. In case
Bar(zo) C Q we use (6.1) to conclude (however, starting from here the constant C
also depends on Cyy)

Chnln|lnR..|Z% .

Inln |In R ’
where R, is the maximal radius such that Bg,, (2¢) C ©. Then since Bag, . (z9) €
) we can use (7.17) to iterate once again and to get

Clnln |In R,.|
72 < OROA 4 21 P
Rya = + Inln|In R|

Z3 4y < CR +

RE2 (L By 070 | Vulp).

Finally, using a simple inequality Inln|ln R**|R§ff° < C we obtain (7.16).
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Then for any zp € © and any R € (0, Rg) such that Bag(xg) C 2 we can apply
(4.1) with v = p to get
ZQQR,Q,‘U
-

Similarly using (5.1) with ¢ = @ (z¢), the Poincaré inequality, the uniform bound
(7.16) and the assumption (1.19) we get that

Z% o <CR* + CZ3p It — U2k (20) || Lo (Ba (20))
+ C(Z%R,I[) - le{,iv())a(ZQQR,:Eo)l_a'
Thus, using the Young inequality and summing (7.18) and (7.19) we get

(7.18) C'Z} 4, < CR™ +

(7.19)

_ Z%R x
(7.20) Zay +(C+CNZE,, < CR™ + TO +CZ3p 4,

+ CZ3g zlu — @2 (0) || Lo (B (20))
which finally leads to

(7'21) WR,ﬂfo < CRJA =+ QWQRJCU + CZ22R,:c0 ”u - EQR("EO)HL‘”(BQR(JCD))?

where

1 C
0 = max (2, W) < 1.

This is the starting inequality for further investigation. First, since u € C(Q), there
surely exists Ry > 0 (depending however strongly on the modulus of continuity of
u) such that for all R € (0, R;) we have

_ 1-46
(7.22) Cllu = a2r(zo)ll L~ (Bor (o)) < —5—
Consequently, it follows from (7.21) and (7.22) that for all R € (0, R;) and all
xo € Q such that Bog(xg) C Q we have

WR,wo < CR(;A + 91W2R,z0; 0 =— <1

and repeating the iterative procedure we find that there is some £; € (0, y) de-
pending on € such that

(7.23)

where R, is the maximal satisfying Ri.. < R1 and Byg, ., (2,) C §2. Hence, in
case R... = R; it leads to

WR@@
RpB1 = C<R1)’

while in case Byg, . (z5) €  we use (4.1) to obtain
Whewwo o o Wikeoooo _

RE: T REL T RUM

where x; € 00 and the second inequality follows from (7.17) and the fact that we

choose 81 < By. Hence, combining these estimates with the boundary estimates
(7.15) we can conclude that for any z¢ € Q and any R € (0, R;) we have

W
16 R sx, X1 < 07

(7.24) [ i o< oy |V,
Br(=o) Re—pHpi
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which by the use of the Morrey embedding leads to
(7.25) u e Ch(Q).

Note here that the estimate (7.24) heavily relies on R; and consequently on the
modulus of continuity of u and therefore in what follows we avoid this dependence.

Next, we proceed slightly differently. We fix some Ry > 0 and 8 € (0, 51) that
will be specified later and for any z¢ €  we define

(7.26) WRy .,z =  SUP R;Dﬁo < o0, WR, = SUP WRy mq-
R€(0:2R2) zo€EN

The fact that wg, 4, is finite follows from (7.24) and the simple inequality

(00 + [Vul’) =" |Vu-af (80 +[Vul*) "= |Vu|2
. | [P T2RBP = RAr Z (R2F)4-
ORI 60+ IVU\ )"z IVUI2 (61-5)
< ~hp Z P / 9=k )d—p+pB1 < C(R) R
Bpro—kt1
< C(Ry).

Finally, we derive uniform bound on wg, 4,. Thus, if the suppremum is attained
form some R € (Rg,2R3) then using (4.1) we get

[Vull}
(7.27) WRyzo < C (1 + —55 | < C(Ry).
Ry
If the opposite is true, i.e., if for some R € (0, Ry] we have
_ WR,ZQ
wRo xro — Rpﬁ bl

we use (7.20), and assume that ( is so small that

oPBp < 1, B<ba

to get
_ WR@O
WRy,zo = ReB
< poa-b 4 gorp WeRao CZ3p ot — G2r(20) || Lo (Bar (o))
(QR)pB RpB
(7.28) o1
1 (Wagrs P
< C+92p WRs,z0 +O(Z2R wo)p ( RPB(J) |u|5,R2
627% + 1
= + Tsz,fL’o + 0(97 B)ZQ2R,10|U|§,2R2'
where
(7.29) |ulg.r, = sup 7|u(m) — u{(gy)| .
x,yeq; 0<|z—y|<2R2 |$ - y|
Since % < 1, we can absorb the second term to the left hand side to get

(7.30) WRy,wy < C +C(0,B)|ulf yp, sup ZQQRJZ.
RE(0,2Rx)
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From now, we assume that 3 is fixed and we only choose Ry in a proper way. First,
using the Morrey embedding, we see that
P
|U|ﬁ,2122 < Cwg,

with some uniform constant C' depending only on 8 and 2 and substituting this
into (7.30), we get

(7.31) Whywy < C+ Cwg, sup Zp, .
RE(0,2Ro)

Finally, using (7.16), it reduces to

Cw
(7.32) Whyzo < C + WIEQR%
Hence, choosing Rs so small that
C 1
nin|In /] = 2
we get
(7.33) 2wR, 2o < C+ wp,.

Consequently taking the supremum with respect to xy € €2, we get ide to conclude
(7.34) wr, <C
and by the Morrey embedding we end the proof of the theorem.

8. PROOF OF THE LIOUVILLE THEOREM

In this section we provide the detail proof of Theorem 1.3. First, it is easy to
observe that due to the p-homogeneity of F' with respect to the second variable,
the assumptions (1.6), (1.7), (1.13) and (1.14)—(1.18) reduce to

(8.1) o[l < F(u,n) < aglnl?,
(82) O‘0|77|p < Fn(uvn) '77+Fu(u777) © U,
N d
(83) an = Z Z Aaﬁ(uan)hlmnlﬁa
B=1m=1
N
(8.4) aolnlP?|ul? < D0 A (un)pt e’ [A(u,m)] < ajlnlP 3,
a,B=1
(8.5) ao|nP < Fy(u,m) -n < pF(u,n).

We start the proof with observing that there exists C' > 0 such that for all R > 1
we have

|VulP
(8.6) /B i dr<C

Indeed, in case we assume that u is a minimizer we can use (3.1) (without absolute
constant which disappear due to the homogeneity of F, or precisely due to (8.1))
to get

|VulP |u — uar|?
8.7 de < C —— dzx < (C
®.7) /BR R 0= EN e
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where the second inequality follows from (1.28) and we see that (8.6) holds. In case
u is a bounded solution, we repeat the procedure as in the proof of Lemma 5.1.
Thus, multiplying (1.1) by urf, and using (8.3)—(8.5) we deduce that

ao/ |VulPry, doe < C’/ \Vu\p717§_1|u\|VTR\ dz
R? R

% y |Vu|Prh do+ C . |Z—': dx
Qo
2
where the last inequality follows from the fact the u is bounded. Hence, absorbing
the first integral on the right hand side to the left hand side and dividing by R~P

IN

IN

|VulPTh, do + CRYP,
R4

we get (8.6).
The next step is to show that
YulP~2|Vu - z|? YulP
(8.8) / M dx < C'lim sup/ | %| dx < C.
Re  |aldTPr? Roso Jp, RETP

To prove it we use the fact that the solution satisfies (1.21), which is either as-
sumed a priori or follows from the fact that u is a minimizer. Therefore, we can
use Lemma 4.2. Moreover, going back to the proof of Lemma 4.2 and using the
homogeneity of F, we see that (4.1) reduces to

p—2 . rl2 p
[ TV o [ N e
Br |z[d—P+ Bop BOTP

where the second inequality follows from (8.6). Thus letting R — oo we find (8.8).
We continue the proof by showing that

(8.9) L :=lim sup/ |V1i|p dx = 0.

R—oo JBpg Ri-p
For this purpose we mimic the procedure developed in Section 6. Thus, first for a
bounded solution, we use Lemma 5.1 with ¢ = 0 and using again the homogeneity
of F the relation (5.1) reduces to

|VU|;D avyl—a
/BR map Ao < CIRY ™™

Then using the fact that u is bounded and the definition of Ir and Yr we get that

p—2 2 “
(8.10) L < Climsup / NVul" [V - 27 dr | =0,
R—oo \JRA\Bg |p|d—P+2

where the second inequality follows from (8.8) and the basic properties of integrable
functions.
In case u is not bounded but a minimizer, we mimic the procedure as in the
proof of Lemma 6.2. Hence, if F satisfies (1.25) we derive from (6.23) that
4 |VulP(1 o _
(8.11) L < Climsup Z / a(u) |Vl E%dj_p‘u u3g]) dx.
Bar

R—oo a;u*==%00

where @ := limp_, up,,. Hence, keeping the same notation as in Lemma 6.2, we
define
vr(z) :=u(Rx) — cr for z € By
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and using the substitution theorem we have the identity

lim sup
R—o0

[ AT ),
Bar Ri-p

a;u*==%00

(8.12)

R—o0

= lim sup Z / a(v} + )| Vogr|P(1 + |vg|) dz.
=100 B2

o;u”
Then repeating step by step the proof of Lemma 6.2, we get the uniform bound

(8.13) lvrllBros,) + [[VRIlwirte(By) < C

and consequently

(8.14) L<limsup 3 fa(ofi+ch)llz

R—oo ga—too
But since
a(vg +c%) — 0 almost everywhere in By
we can use the Lebsegue dominated convergence theorem and to show the validity

of (8.9).
Consequently, substituting (8.9) into (8.8) we get

[VulP=2|Vu -z

Finally, using (5.1) once again with ¢ =0 we get

|Vu|p l-aya __
/BR map 4 < CYR I =0,

where we used the definition of Ir and (8.15). Since R is arbitrary, we see that
Vu = 0 in R? and consequently u is a constant vector. Thus, the proof is complete.

APPENDIX A. A LOGARITHMIC ESTIMATE FOR MEAN VALUES

In this section we derive an estimate for the mean value of a nonnegative function
v in terms of the p - Dirichlet integral for its derivatives. So, the main result of this
section is following.

Lemma A.1. Let p € (1,00) and Q C R? be an open set. Then there exists C > 0
such that for any xg € Q and any 0 < Ry < Ry such that Br,(xo) C § the following
estimate holds true for all nonnegative v € WHP(Q):

l1—a 1
Y

(A1) / % dmg/ ifl) de+C I/ I,” +Yy Y, " (n(Re/R1))7,
Br, (z0) 111 Br, %2
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where

Il =

|Vo(z)|P~2|Vo() - (z — 20)|?
d—p+2 da,
Br, (%0) Ry

v p
Br, (z0) Iy

_ [Vo(z)[P—2|Vo(z) - (z — x0)[?
Y, = o — zo|i 12
Bry (0)\Br, (w0) 0

p
Br, (20)\Br, (z0) |Z — o|4™P

and « is defined as

dx,

. p
= 1,2).
o := min( ,2)

Proof. To simplify the proof, we consider only the point zy = 0. For other xg the
proof is the same. In addition, to shorten all formulae appearing in the following,
we denote

BR = BR(xo), A};éz = BRQ\BRl'

We start the proof with the following identity that is a consequence of an inte-
gration by parts formula (here n denotes the unit outward normal vector)

R vdS = vr-ndS
OBRr OBRr

:/ div(vfc)dfc:/ Vv~xdx+d/ vdz
Br Br Br

Thus dividing the result by R+ we see that

i (R_d/ v da:) =R %1 Vv -z dx
dR Br Br

and therefore integration over R € (R, Rg) gives

R
v v 2 Vv - x|
(A.2) / — dz < / — dz +/ / dz dR.
Br, B Br, 13 R, JB, R

Thus, we see that to prove (A.1) it is enough to estimate the second integral on
the right hand side of (A.2). First, we use integration by parts (now w.r.t. R) to
deduce that

Ra [V - x| 1 [ Vv - x| fiz
——— dx dR = —— / dx:|
/Rl /BR Rd+1 d Br Rd Ry

1 [ Vv - x|
A3 + - / dS dR
(4.3) dJr, Jop. R?

Sl/ WU;ﬁ'der/ L”'m‘ddx.
d Br, Rl A}Q‘Z |l‘ - $O|

Hence, it only remains to estimate the last two integrals in (A.3). First, we focus
on the case p > 2. For such p’s we use the Holder inequality and the fact that
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|z] < Ry in Bg, to obtain

. P\’
/ |Vvdx| dr < C / Vo d;v| de
Br, Rl Br, Rl

1
p—2 . rl2 P
gc(/ W'devf; i da:)
Br, 1
and also

p—2 2

Vv - x| Vol 7 |Vu-zl» 1
[ St [
Ap Ap 1 !

x| |7

VoulP~2|Vu - z|? B 1
<C (/,41’2 |||x|d|1”+2 dx) (In(R2/R1)) ®

and combining these estimates with (A.2) and (A.3) we find (A.1) for p > 2.
Similarly, for p € (1,2) we can deduce by using the Holder inequality that

/ Vv -z dw:/ Vo|*= Vo o] Vo1 b
Br, Br,

Ril % (d=p)(2=p) a

Rl R1 B Rf
1 2-p
p—2 L2 2 P 2P
<C / Vol Vo - 27 d_|v_:; i dz / 7|le1\ dx
Br, Rl P Bry Rl ?
and that

p—2 2—p
Vv -z / Vol =z |[Vo-z|  |Vu| = 1
dx = . . dx
/A}f Ag®

|| || “F 2| T o)

|Vo|P=2| Vo - z|? 2 VP T s
S C </1;1,2 W de' A1,2 WTP d.’I] (ln(RQ/Rl))
" R

Substituting these estimates into (A.2) and (A.3) we again easily deduce (A.1).
Thus, the proof is complete. ([

APPENDIX B. L A PRIORI BOUNDS FOR SOLUTIONS

This section is devoted to deriving L>° and exponential bounds for solutions of
(1.1). First, we discuss the simple case described by the Uhlenbeck structure.

Lemma B.1. Let F(u, Vu) = a(u)[|Vu|? + 8% and a satisfy (1.12). Assume that
u € Wy P(Q;RN)is a weak solution to (1.1) with b satisfying (1.20). Then there
exists C' depending only on g, K,p and 64 such that

(B.1) [ulloo < C.
Proof. The proof is based on the Moser iteration technique. We test? the system
(1.1) by u|u|™ with arbitrary m > 0. Thus, after integration by parts and by using

31t is not a possible test function but me can properly truncate such a function to make the
proof rigorously.
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(1.12) and (1.20) we find that
ao/(50+|w|2)?%2|vu|2|u|m dz
Q

1 p—2
(B.2) + 5/ a(u)(8o + |Vul?) = Viul> - V]u|™ dx
Q

< K/ [ (VP04 4 1) da
Q

Next, we use the Young inequality to bound the term on the right hand side. Hence
assuming 4 < 1 we get

K/ Ju| (| VuP~1704 +1) da
Q

<C [Vl g, + ™ da
(B.3) «

p— —1-6 m (146 4)
= C [ (G4 [9aP) 7 [DuP ™) 7 g da
Q
< 20 [ (60 + [Vul) Z [Vl ul™ + C/ Ju| AT d.
2 Ja Q
Similarly, one can observe that
/(50 +[Vuf?) = [Vul2lu™ do > / [VulPlul™ — |u[™ dz
Q Q
and combining it with (B.2) and (B.3), we deduce the final estimate

p P
(B.4) (p> /|V|u| el dxg/ VP u|™ dxgc/ u| A g,
m-+p Q Q Q

Thus, uign the Sobolev embedding theorem, we see that (assuming for simplicity
that p < d)

m+p
(B.5) lullseat ) = Ml 7 [Py <
d—p d—p

<o (™) mE
p =

s, tm

Note here, that d4 > 0 is needed just to get the first a priori estimate, i.e., setting
m = (0 we can get that
[ullp, < C.

However, in what follows we consider the worst case, i.e., 64 = 0 and then (B.5)
reduces to

P
1 (m—+p\mtr
(B.9) follages < 75 (PE2) ™

Therefore, defining

k

dpk d
Po ‘=D, Pet1= 55— < Pk+1=\| 55— | D,
d—p d—p

we get from (B.6)

D
L (pg\ s
B.7) lullpe,, < C% (p) el
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which after an iteration procedure leads to

(B.8) fullp, < CEi=0 7t eZi=0 7 "% |y, < CEF0 7 X0 5 05y,
B.8
_ O TR (X2 (50) K s |l < K.

Hence letting k — oo we get (B.1). O

APPENDIX C. EXPONENTIAL A PRIORI ESTIMATES FOR SOLUTION

The second estimate of this section is only of the exponential type however works
also for more general structure of F.

Lemma C.1. Let u € Wy (S RY) be a weak solution to (1.1). Assume that F
satisfies (1.7), (1.17) and (1.13). Let m > 1 be given and assume that there exists
a smooth bounded mapping a : RN — RN*N such that for all u,&,u € RN and
n e RExN

N
(C.1) > P (wuu? > dplul?,
a,f=1
N
(C.2) > A (un)a (W)’ > 0,
a,B,y,0=1
(C.3) la (u)||u]*™ T < K.

Then there exist constants C, A1 > 0 depending only on K,04,0p, Ao, g such that
(C.4) / uf2eM ™ 4z < C.
Q

Proof. First we define a quadratic form B(u) as

N
B(u) := Z a”d (w)uul.

v,0=1

Next, we test (1.1) by ue*B)™ with some A := 522 > 0. Therefore after

2Km

integration by parts and using (1.7), (1.13) and (1.20) we find that

ao / (60 + [Vul?) 22 |Vuf2eMB@)"
Q

(C.5) m m
+/ZAO"B(U,Vu)uaVuB~Ve’\(B(“)) dxg/ 1b]|u|eNBE™ dy.
Q Q
o,
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First we focus on the last term on the left hand side of (C.5). This term can be
estimated as

N
2/ Z AP (0, Vu)u® Vi - veMB)™ gy
Q
a,f=1

N
= )\m/ (B(u))™~teMB)™ Z AP (u, Vu)V (u®u®) - V(a"° (u)u u’) da
£ «a,B,y,0=1
N
= )\m/ (B(u))m™teMB)™ Z A%P (4, Vu)a™® (u)V (uu?) - V(uu’) dx
2 a,B,y,0=1
N
+Am / (B(u)™ BN 498 (u, Vu)u u’ V (u®u?) - V(0 (u) da.
Q a,B,v,0=1

Next using the assumption (C.2) we see that the first term is nonnegative and using
the assumption (C.3) we can estimate the second term as

N
Am /(B(u))m_le”\(B(“))m Z AP (u, Vu)u u® V (u®u?) - V(a?® (u)) dx
Q a,B,v,0=1

< Am/ [P LA (5 + |Vul) 7 [Vula,(u)] do
Q

< [ ot 1Vu)F A,
Q

where, for the last inequality we used the choice of \. Then we can estimate the
right hand side of (C.5) via the similar procedure as in the preceding Lemma and
we can finally conclude that

/ Ju|2eAB)™ gy < C.
Q
Thus, using (C.1) we find (C.4). O
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