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Abstract

In this paper we show existence of a global classical solution to a quasilinear
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1 Introduction

Recently, flows in materials with a stress-strain relation dependent on an external
factor (e.g. concentration of a chemical) started to have been studied intensively, see
Buĺıček, Málek and Rajagopal [3] and references therein. An integral model for a
viscoelastic material was introduced by Rajagopal and Wineman in [6] and applied
by Bárta in [1], [2] to parabolic models of viscoelastic fluids.

In this paper, we consider the following system

utt = χ(c, ux)uxx +

∫ t

0
k(c(t, x), t− s)ψ(ux(s))xds+ g,

ct = cxx. (1)

A one-dimensional viscoelastic body is represented by the interval Ω = [0, 1],
x ∈ [0, 1]. The displacement of a particle x at time t is denoted by u(t, x) and
c(t, x) is a concentration of a chemical in (t, x). Function g represents an external
force. Since we assume that difusivity is independent of u, the two equations are not
coupled.

Since we can get c from the second equation and insert it to the first equation,
we will be interested in equations of the form

utt = χ(t, x, ux)uxx +

∫ t

0
as(t, x, t− s)ψ(ux(s))xds+ g (IDE)
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(here as is the derivative of a with respect to the third variable). Equations similar
to this one were studied by Dafermos and Nohel [4], Hrusa and Nohel [5], Renardy,
Hrusa and Nohel [7] and others.

Unlike the works mentioned in the previous paragraph, in our case the functions
χ and a depend explicitly on t and x and a is not a convolution kernel any more.
However, we will assume that the dependence on t and x is not very strong and a is
almost convolution kernel. In this case, we show existence and uniqueness of classical
solutions by the same methods as in the above mentioned papers.

Let us mention that Rajagopal and Wineman introduced a model with

k(c(t, x), t− s) = e−λ(c(t,x))(t−s),

see [6], where λ is a positive function. If λ is smooth and λ ≥ ε > 0, then for small
changes of concentration the kernel k is almost convolutionary, as was shown in [1].

We consider the following initial and boundary conditions.

u(0, ·) = u0, ut(0, ·) = u1, u(·, 0) = u(·, 1) = 0. (Cu)

c(0, ·) = c0, cx(·, 0) = cx(·, 1) = 0. (Cc)

2 Notation and the main results

Let us start with introducing another form of (IDE). Let us apply integration by
parts to the integral in (IDE). We obtain

utt = ϕ(t, x, ux)uxx +

∫ t

0
a(t, x, t− s)ψ(ux(s, x))xtds+ f(t, x), (IDE1)

where
f(t, x) = g(t, x) + a(t, x, t)ψ′(u′0(x))u′′0(x)

and
ϕ(t, x, ux) = χ(t, x, ux)− a(t, x, 0)ψ′(ux(t, x)).

For the function χ = χ(t, x, ux(t, x)) we will denote χt, resp. χx the derivatives
with respect to the first, resp. second variable, the derivative with respect to the third
variable is denoted by χ′(t, x, ux(t, x)). Similarly for the function ϕ. For a : J×Ω×J
we will denote the partial derivatives with respect to first, second and third variable
respectively by at, ax, as.

In the following, Ω = [0, 1] and J := [0, Tmax] or J := [0,+∞) = R+. For a
function u : J × Ω → R we will often use notation u(t) := u(t, ·) and ‖u(t)‖2 :=
‖u(t, ·)‖L2(Ω). On the other hand, by ‖u‖2 we mean ‖u‖L2(J×Ω).

We say that a kernel a : J × Ω × J → R is of strong positive type (or strongly
positive definite), if there exists c > 0 such that

Q(a, T, v) ≥ cQ(e, T, v)
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for all v ∈ C(J, L2(Ω)) and all T ∈ J , where

Q(a, T, v) :=

∫ T

0

∫
Ω

∫ t

0
a(t, x, t− s)v(s, x) ds v(t, x) dx dt

and Q(e, T, v) similarly with a replaced by e(t, x, t− s) := et−s.
Throughout the paper, C > 0 will be a generic constant and Z : R+ → R+ will

be a generic function which is continuous nondecreasing and Z(0) = 0.
Our aim is to show global existence for small data and small values of ux. So, let

us fix a small neighborhood of 0 and denote it by B.
Let us introduce our assumptions.
(A1) χ, ϕ ∈ C2

b (J × Ω × B), ψ ∈ C3
b (B) and all derivatives of χ, ϕ, ψ (up to

second resp. third order) are pointwise bounded by Cψ and χ, ϕ, ψ′ ≥ cψ > 0 on
J × Ω×B, resp. B

(A2) a ∈ C2
b (J ×Ω×J) with att, ats ∈ L1(J2(L∞(Ω))), as(0, 0, ·) ∈ L2(J), at, as,

axs(T, ·, T − ·) ∈ L1(J, L∞(Ω)).
(A3) u0 ∈ H3(Ω), u1 ∈ H2(Ω), u0(0) = u0(1) = u1(0) = u1(1) = 0.
(A4) g, gx, gt ∈ Cb(J, L2(Ω)), g, gx, gt, gtt ∈ L2(J, L2(Ω)).
(A5) χ′(u′0(0))u′′0(0) + g(0, 0) = χ′(u′0(1))u′′0(1) + g(1, 0) = 0.
(A6) a is of strong positive type.
Let us introduce several quantities measuring the data

U0(u0, u1) :=

∫
Ω
u2

0 + (u′0)2 + (u′′0)2 + (u′′′0 )2 + u2
1 + (u′1)2 + (u′′1)2 dx (2)

F (f) := sup
t∈J

∫
Ω

(f2 + f2
x + f2

t )(t, x) dx+

∫
J

∫
Ω
f2 + f2

x + f2
t + f2

tt)(t, x) dx dt (3)

and similarly F (g). We will often write F instead of F (f) + F (g) and U0 instead of
U0(u0, u1). Let us define

εϕ := max
J×Ω×B

{ϕt, ϕtx, ϕ′t, ϕttx, ϕ′tx, ϕ′x, ϕ′tt}, (4)

εχ := max
J×Ω×B

{χt, χtx, χ′t, χttx, χ′tx, χ′x, χ′tt, χx}, (5)

εa := sup
t

(
ãt(t, 0) +

∫
J
|ãt(t, t− s)| ds+

∫
J
ãts(t, s)

2 + ãxs(t, s)
2 ds

)
+∫

J

∫
J
|ãtt(t, s)|+ |ãts(t, s)| ds dt, (6)

where ãt means supx at. Further we introduce two quantities measuring the solution

ν(t) := max
x∈Ω,s∈[0,t]

(u2
x + u2

xx + u2
tx)1/2(s, x) (7)

and

E(t) := max
s∈[0,t]

∫
Ω

(u2 + u2
x + u2

t + u2
xx + u2

tx + u2
tt + u2

xxx + u2
txx + u2

ttx + u2
ttt)(s, x) dx

+

∫ t

0

∫
Ω

(u2 + u2
x + u2

t + u2
xx + u2

tx + u2
tt + u2

xxx + u2
txx + u2

ttx + u2
ttt)(s, x) dx ds,
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Theorem 2.1 Assume (A1) – (A6) hold. There exists µ > 0 such that for every u0,
u1, g, χ and ϕ satisfying

U0(uo, u1) + F (g) + εϕ + εχ ≤ µ, (8)

the initial-boundary value problem (IDE) has a unique solution u : Ω× J → R with

u, ux, ut, uxx, utx, utt, uxxx, utxx, uttx, uttt ∈ Cb(J, L2(Ω)) ∩ L2(J, L2(Ω)).

If J = R+ then
u, ux, ut, uxx, utx, utt → 0

uniformly on Ω as t→ +∞.

Denote

C0(c0) :=

∫
Ω
c2

0 + (c′0)2 + (c′′0)2 + (c′′′0 )2 + (c′′′′0 )2 dx. (9)

Let U ⊂ R be a neigborhood of zero. Consider the following assumptions
(A1’) χ ∈ C2

b (U × J), ψ ∈ C3
b (B) and all derivatives of χ, ψ (up to second

resp. third order) are pointwise bounded by Cψ and χ(t, x, 0) > 0, ψ′(0) > 0 and
χ(t, x, 0)− a(t, x, 0)ψ′(0) > 0.

(A2’) k ∈ C2
b (U × J) with k, k′, k′′, ks, k

′
s ∈ L1(J, L∞(U)).

(A3’) u0 ∈ H3(Ω), u1 ∈ H2(Ω), u0(0) = u0(1) = u1(0) = u1(1) = 0, c0 ∈ H4(Ω).
(A4’) = (A4)
(A5’) = (A5)
(A6’) (t, s) 7→ k(c(t, x), s) is of positive type for every c ∈ C2

b with ‖ct‖∞ small
enough.

The assumption (A6’) is not easy to verify, but Theorem 2.4 and Example 2.8
in [1] give sufficient conditions under which (A6’) holds. In fact, the assumption
(A6’) is satisfied if k(z, ·) is of η-strong c-positive type for all z ∈ U , k′(z, 0) =
lims→+∞ k

′(z, s) = lims→+∞ k
′
s(z, s) = 0, and ‖k′s(z, 0)‖, ‖k′(z, ·)‖1, and ‖k′ss(z, ·)‖1

are bounded by a constant independent of z.
In particular, if k(c(t, x), t − s) = e−λ(c(t,x))(t−s), where λ is a smooth function

with values in [α, β], α > 0, then (A6’) holds (see Example 2.8 and the third section
of [1]).

Theorem 2.2 Assume (A1’) – (A6’) hold. There exists µ > 0 such that for every
u0, u1, c0, g and χ satisfying

U(uo, u1) + F (g) + C0(c0) + εχ ≤ µ,

the system (1) has a unique solution (u, c) : J × Ω→ R2 with

u, ux, ut, uxx, utx, utt, uxxx, utxx, uttx, uttt ∈ Cb(R+, L
2(I)) ∩ L2(R+, L

2(I))

If J = R+ then
u, ux, ut, uxx, utx, utt → 0

uniformly on Ω as t→ +∞.
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Remark 2.3 (1) If χ does not depend on c (i.e., the instant response does not depend
on concentration) then εχ = 0 and Theorem 2.2 yields global existence provided the
initial values and the external force g are small enough.

(2) If moreover k(c(t, x), 0) is independent of c (e.g. in the case k(c(t, x), t− s) =
e−λ(c(t,x))(t−s)), then also εϕ = 0. In this case, the proof would be shorter since many
terms in the estimates disappear.

3 Local existence

We will generalize Theorem III.5 from [7]. Consider the following equation

utt = A(t, x, ux)uxx +

∫ t

0
K(t, t− s, x, ux(s))uxx(s)ds+ F (t) (10)

with initial and boundary conditions

u(0, ·) = u0, ut(0, ·) = u1, u(t, 0) = u(t, 1) = 0. (11)

Assume
(S1) A ∈ C2(J × Ω× U).
(S2) u0 ∈ H3([0, 1]), u1 ∈ H2([0, 1]), ∇u0(x) ∈ U for all x ∈ [0, 1].
(S3) F ∈

⋂1
k=0C

1−k(J,Hk(Ω)), Ftt ∈ L1(J, L2(Ω)).
(S4) K ∈ C2(J2 × Ω× U).
(S5) A ≥ εA > 0 on J × Ω× U .
(S6) ∂kt u(·, 0) = ∂kt u(·, 1) = 0 for k = 0, 1, 2.

Theorem 3.1 Let (S1) – (S6) hold. Then there exists T ∈ (0, Tmax] such that (10)
has a solution u ∈

⋂3
k=0C

3−k([0, T ), Hk(Ω)). Moreover, if

sup
t∈[0,T )

∫
Ω
u2(t) + u2

x(t) + u2
xx(t) + u2

xxx(t) + u2
t (t) + u2

tx(t) + u2
txx(t) dx < +∞, (12)

then T = Tmax.

Proof. The proof is very similar to the proof of Theorem III.5 in [7] where the same
statement is proved with A, K independent of (t, x). Therefore, we will just give the
main idea and point out differences.

We consider the linearized equation

utt = A(x, t, wx)uxx +

∫ t

0
K(t, t− s, x, wx(s))wxx(s)ds+ F (t).

It has a solution u ∈
⋃m
k=0C

m−k([0, Tmax], Hk(Ω)) for each w by Lemma III.3 in [7].
We show that the mapping S : w 7→ u is a contraction on X(T ′,M) for T ′ small and
M large enough, where

X(T,M) = {w ∈
3⋂

k=0

W 3−k,∞([0, T ′], Hk(Ω)),

∂kt w(·, 0) = ∂kt w(·, 0), k = 0, 1, 2,
3∑

k=0

‖w‖k,3−k ≤M},
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where ‖ · ‖k,l is the norm of W k,∞([0, T ′], H l(Ω)).
To show that S : X(T,M) → X(T,M) for appropriate T , M one can use the

same procedure as in Lemma III.8 in [7], there only appear several new terms that
can be easily estimated. In fact,∫ t

0
‖∂1A(s, ·, wx(s, ·))‖H1 ds ≤ C,

∥∥∥∥∫ t

0
K(t, t− s, ·, wx(s, ·))wxx(s·) ds

∥∥∥∥
H1

≤ C + T · P (M),

and ∥∥∥∥ ddt
∫ t

0
K(t, t− s, ·, wx(s, ·))wxx(s·) ds

∥∥∥∥
2

≤ C + T · P (M)

hold by the same argument as in [7] (P (M) is a generic continuous function of M).
To show that S is contractive in the metric

d(w, w̄) := (‖w − w̄‖20,2 + ‖w − w̄‖21,1 + ‖w − w̄‖22,0)1/2

we estimate as in [7]. Taking the difference of equations for w, u := Sw and w̄,
ū := Sw̄, differentiate w.r.t. t, multiply by Utt := utt − ūtt and integrate over space
and time we obtain some extra terms that will be of lower order than the terms
already present. So, they can be estimated via Hölder and Young inequalities as in
[7], Lemma III.9.

The moreover-part follows by the standard continuation argument. If T < Tmax,
then limt→T−(u(t), ut(t)) exists and it belongs to (H3, H2), so it can be considered as
a new initial condition and the solution can be extended to [T, T + δ). �

Corollary 3.2 Let (A1)-(A5) hold. Then there exist T ∈ (0, Tmax] such that (IDE),
(Cu) has a unique solution u ∈

⋂3
k=0C

3−k([0, T ), Hk(Ω)). If (12) holds, then T =
Tmax.

Proof. It is easy to see that (A1)-(A5) imply (S1)-(S6). �

4 Global existence for small a

To show global existence on the interval J , it is sufficient to show that E(T ) will not
escape to infinity. This will follow from the key estimate

E(T ) ≤ CZ(U0)+CZ(F )+C(ε)ε2
ϕ+CE(T )(ε+εϕ+εχ+εa)+CE(T )3/2 +CE(T )2.

(13)
More precise formulation is contained in the following lemma.

Lemma 4.1 Let (A1)-(A6) hold. Then there exists a continuous function Z satis-
fying Z(0) = 0 and a constant C > 0 such that (13) holds for all T ∈ J .
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The proof of this lemma is contained in Lemmas 4.3 - 4.8. Now we show global
existence theorem with an additive assumption that derivatives of a are not very
large.

Theorem 4.2 Let (13) hold with εa < 1/C. Then Theorem 2.1 holds.

Proof. Since we have local existence by Corollary 3.2, it is sufficient to show that
condition (12) is satisfied. It will follow from (13)

Take εϕ, εχ, ε so small that C(ε+ εϕ + εX + εa) = 1− δ < 1. Then we have

E(T ) ≤ C

δ
Z(U0) +

C

δ
Z(F ) +

C(ε)

δ
ε2
ϕ +

C

δ
E(T )3/2 +

C

δ
E(T )2

for t ∈ J . Take γ > 0 so small, that C
δ γ

3/2 < γ/4 and C
δ γ

2 < γ/4 and then

U0, F and εϕ so small that C
δ Z(U0) + C

δ Z(F ) + C(ε)
δ ε2

ϕ < γ/4 and E(0) < γ. Let

Tγ := sup{T ∈ J : E(t) ≤ γ ∀t ∈ [0, T ]}. Then E(t) ≤ 3
4γ on [0, Tγ). Hence,

Tγ = Tmax by Corollary 3.2. �

Now we will prove six lemmas that together with Remark 4.9 give a proof of
Lemma 4.1.

Lemma 4.3 Let (A1) – (A6) hold and u ∈
⋂3
k=0C

3−k([0, T1), Hk(Ω)) is a solution
to (IDE), (Cu). Then

‖utx(T )‖22 + ‖uxx(T )‖22 +Q(a, T, ψ(ux)xt) ≤
CZ(U0) + CZ(F ) + CE(T )3/2 + C(εϕ + ε)E(T ). (14)

Proof. Multiply (IDE1) by ψ(ux)xt = ψ′′(ux)uxtuxx + ψ′(ux)uxxt and integrate over
[0, 1]× [0, T ]. We obtain∫ T

0
[uttψ(ux)t]

1
x=0 −

∫ 1

0

d

dt
[
1

2
ψ′(ux)u2

tx] + ψ′′(ux)u3
xt dx dt =∫ T

0

∫ 1

0

d

dt

[
1

2
ϕ(t, x, ux)ψ′(ux)u2

xx

]
− 1

2
ϕtψ

′u2
xx −

1

2
ϕ′ψ′uxtu

2
xx +

1

2
ϕψ′′u2

xxuxt dx dt

+Q(a, T, ψ(ux)) +

∫ ∫
fϕ(ux)xt.

Hence,

1

2

∫ 1

0
ψ′(ux)u2

tx(T ) + ϕ(t, x, ux)ψ′(ux)u2
xx(T ) dx+Q(a, T, ψ(ux)) =

1

2

∫ 1

0
ψ′(u′0)(u′1)2 + ϕ(0, x, u′0)ψ′(u′0)(u′′0)2−∫ T

0

∫ 1

0
ψ′′(ux)u3

xt −
1

2
ϕtψ

′u2
xx −

1

2
ϕ′ψ′uxtu

2
xx +

1

2
ϕψ′′u2

xxuxt + fψ(ux)xt dx dt.

Estimating ψ′ and ϕ on the left-hand side from bellow and the derivatives of ϕ, ψ
on the right-hand side from above and using Hölder and Young inequality we obtain
(14). �
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Lemma 4.4 Let (A1) – (A6) hold and u ∈
⋂3
k=0C

3−k([0, T1), Hk(Ω)) is a solution
to (IDE), (Cu). Then

‖uttx(T )‖22 + ‖utxx(T )‖22 + lim
h→0

1

h2
Q(a, T,∆hψ(ux)xt) ≤

CZ(U0) + CZ(F ) + C(ε)ε2
ϕ + CE(T )(ε+ εϕ + εa) + CE(T )3/2 + CE(T )2 (15)

Proof. Applying ∆h to (IDE1) we obtain (using Lemma 6.4)

∆hutt(t) = ∆hϕ(t, x, ux(t))x +

∫ t

0
a(t, x, t− τ)∆hψ(ux)xt(τ)dτ + ∆hf(t)

+

∫ h

0
a(t+h, x, t+h−s)ψ(ux)xt(s) ds+

∫ t

0
[a(t+h, x, t−s)−a(t, x, t−s)]ψ(ux)xt(s+h) ds

(16)

We multiply both sides by ∆h(ψ(ux)xt) and integrate over [0, 1]× [0, T ]. Denote the
six terms we obtain by I1, . . . , I6. We will compute the limits limh→0

1
h2
Ij =: Lj .

Let us start with the first term.

I1 = −
∫ T

0

∫ 1

0
∆h[ψ′(ux)utx]∆huttx dx dt =

−
∫ T

0

∫ 1

0

1

2
[ψ′(ux)(∆hutx)2]t−

1

2
ψ′′(ux)uxt[∆hutx]2+∆hψ

′(ux)utx(t+h)∆hutx dx dt =

−
∫ 1

0

1

2
[ψ′(ux)(∆hutx)2](T ) dx−

∫ 1

0

1

2
[ψ′(ux)(∆hutx)2](0) dx−∫ T

0

∫ 1

0

1

2
ψ′′(ux)uxt[∆hutx]2 + ∆hψ

′(ux)utx(t+ h)∆hutx dx dt

After dividing by h2 and taking the limit for h→ 0 we obtain L1 equal to

−
∫ 1

0

1

2
ψ′(ux(T ))u2

ttx(T )+

∫ 1

0

1

2
ψ′(u′0)u2

ttx(0)−
∫ T

0

∫ 1

0

1

2
ψ′′(ux)uxtu

2
ttx+[ψ′(ux)]tutxuttx dx dt.

(17)

The second term in (16) gives

I2 =

∫ T

0

∫ 1

0
∆h[ϕx(t, x, ux) + ϕ′(t, x, ux)uxx]∆h[ψ′(ux)uxx]t dx dt =∫ T

0

∫ 1

0
[∆hϕx(t, x, ux)+ϕ′(t, x, ux)∆huxx+∆hϕ

′(t, x, ux)uxx(t+h)]∆h[ψ′(ux)uxx]t dx dt

(18)

The most problematic term in (18) gives∫ T

0

∫ 1

0
ϕ′(t, x, ux)∆huxx∆h[ψ′(ux)uxx]t dx dt =

∫ T

0

∫ 1

0
ϕ′(t, x, ux)∆huxxψ

′(ux)∆huxxt+

ϕ′(t, x, ux)∆huxx∆h[ψ′′(ux)u2
xx] + ϕ′(t, x, ux)∆huxx∆hψ

′(ux)uxxt(t+ h) dx dt (19)
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Here the first term on the right-hand side is∫ T

0

∫ 1

0

1

2
[ϕ′(t, x, ux)ψ′(ux)(∆huxx)2]t−

1

2
[ϕ′(t, x, ux)ψ′(ux)]t(∆huxx)2 dx dt =

∫ 1

0

1

2
[ϕ′(t, x, ux)ψ′(ux)(∆huxx)2](T ) dx−∫ 1

0

1

2
[ϕ′(t, x, ux)ψ′(ux)(∆huxx)2](0) dx−

∫ T

0

∫ 1

0

1

2
[ϕ′(t, x, ux)ψ′(ux)]t(∆huxx)2 dx dt

After taking the limit∫ 1

0

1

2
[ϕ′(t, x, ux)ψ′(ux)u2

txx](T ) dx−
∫ 1

0

1

2
[ϕ′(t, x, ux)ψ′(ux)u2

txx](0) dx−∫ T

0

∫ 1

0

1

2
[ϕ′(t, x, ux)ψ′(ux)]tutxx)2 dx dt (20)

The remaining terms on the right-hand side in (19) give∫ T

0

∫ 1

0
ϕ′(t, x, ux)∆huxx∆h[ψ′′(ux)u2

xx] +ϕ′(t, x, ux)∆huxx∆hψ
′(ux)uxxt(t+h) dx dt

and the limit is∫ T

0

∫ 1

0
ϕ′(t, x, ux)utxx[ψ′′(ux)u2

xx]t + ϕ′(t, x, ux)utxxψ
′′(ux)utxutxx dx dt =∫ T

0

∫ 1

0
ϕ′(t, x, ux)utxx[ψ′′′(ux)utxu

2
xx+ψ′′(ux)2uxxutxx]+ϕ′(t, x, ux)utxxψ

′′(ux)utxutxx dx dt

(21)

Taking the limit in the remaining terms of (18) we obtain∫ T

0

∫ 1

0
[∆hϕx(t, x, ux) + ∆hϕ

′(t, x, ux)uxx(t+ h)] ·∆h[ψ′(ux)uxxt] dx dt =

−
∫ T

0

∫ 1

0
∆h[∆hϕx(t, x, ux) + ∆hϕ

′(t, x, ux)uxx(t+ h)]ψ′(ux)uxxt dx dt+(
−
∫ h

0
+

∫ T+h

T

)∫ 1

0
[∆hϕx(t, x, ux) + ∆hϕ

′(t, x, ux)uxx(t+ h)]ψ′(ux)uxxt dx dt.

Taking the limit we have

−
∫ T

0

∫ 1

0
[[ϕx(t, x, ux)]t + [ϕ′(t, x, ux)]tuxx]tψ

′(ux)uxxt dx dt−∫ 1

0
[(ϕx(t, x, ux))t + (ϕ′(t, x, ux))tuxx]ψ′(ux)uxxt(0) dx+∫ 1

0
[(ϕx(t, x, ux))t + (ϕ′(t, x, ux))tuxx]ψ′(ux)uxxt(T ) dx (22)

9



Hence,
L2 = (20) + (21) + (22).

The third term in (16) is I3 = Q(a, T,∆hψ(ux)xt), taking limsup we have

lim sup
h→0

1

h2
Q(a, T,∆hψ(ux)xt). (23)

The fourth term in (16) yields

I4 =

∫ T

0

∫ 1

0
∆hf∆h[ψ′(ux)uxxt] dx dt = −

∫ T

0

∫ 1

0
∆h[∆hf ]ψ′(ux)uxxt dx dt+(

−
∫ h

0
+

∫ T+h

T

)∫ 1

0
∆hfψ

′(ux)uxxt dx dt

and the limit is

L4 =

∫ T

0

∫ 1

0
fttψ

′(ux)uxxt dx dt+

∫ 1

0
ftψ
′(ux)uxxt(T ) dx dt−

∫ 1

0
ftψ
′(ux)uxxt(0) dx dt.

(24)
In the fifth and sixth term in (16) we need to move ∆h from ψ′(ux)xt to the

integral term ∫ h

0
a(t+ h, x, t+ h− s)ψ(ux)xt(s) ds

resp. ∫ t

0
[a(t+ h, x, t− s)− a(t, x, t− s)]ψ(ux)xt(s+ h) ds

In the fifth term we obtain (using Lemma 6.3)

I5 =

∫ T

0

∫ 1

0

∫ h

0
∆ha(t+ h, x, t+ h− s)ψ(ux)xt(s) ds(ψ′(ux)uxx)t dx dt+(

−
∫ h

0
+

∫ T+h

T

)∫ 1

0

∫ h

0
a(t+ h, x, t+ h− s)ψ(ux)xt(s) ds(ψ′(ux)uxx)t dx dt

Taking the limit we have

L5 =

∫ T

0

∫ 1

0
(at + as)(t, x, t)ψ(ux)xt(0)(ψ′(ux)uxx)t dx dt+∫ 1

0
a(T, x, T )ψ(ux)xt(0)(ψ′(ux)uxx)t(T ) dx−

∫ 1

0
a(0, x, 0)ψ(ux)xt(0)(ψ′(ux)uxx)t(0) dx.

(25)

The sixth term gives (with help of Lemma 6.3)

I6 =

∫ T

0

∫ 1

0
∆h

[∫ t

0
[a(t+ h, x, t− s)− a(t, x, t− s)]ψ(ux)xt(s+ h) ds

]
(ψ′(ux)uxx)t dx dt+(

−
∫ h

0
+

∫ T+h

T

)∫ t

0
[a(t+h, x, t−s)−a(t, x, t−s)]ψ(ux)xt(s+h) ds(ψ′(ux)uxx)t dx dt

10



and taking the limit we have

L6 =

∫ T

0

∫ 1

0

[∫ t

0
at(t, x, t− s)ψ(ux)xt(s) ds

]
t

(ψ′(ux)uxx)t dx dt+∫ 1

0

∫ T

0
at(T, x, T − s)ψ(ux)xt(s) ds(ψ′(ux)uxx)t(T ) dx (26)

Since the limit exists in all terms except the one with Q, the limsup in (23) must be
in fact a limit and putting (17), (20), (21), (22), (23), (24), (25), (26) together, we
obtain∫ 1

0

1

2
ψ′(ux(T ))u2

ttx(T )+

∫ 1

0

1

2
[ϕ′(t, x, ux)ψ′(ux)u2

txx](T ) dx+lim
h→0

1

h2
Q(a, T,∆hψ(ux)xt)

=

∫ 1

0

1

2
ψ′(u′0)u2

ttx(0) +

∫ 1

0

1

2
[ϕ′(t, x, ux)ψ′(ux)u2

txx](0) dx

+

∫ 1

0
[(ϕx(t, x, ux))t + (ϕ′(t, x, ux))tuxx](ψ′(ux)uxx)t(0) dx

+

∫ 1

0
ft(ψ

′(ux)uxx)t(0) dx

−
∫ 1

0
[(ϕx(t, x, ux))t + (ϕ′(t, x, ux))tuxx](ψ′(ux)uxx)t(T ) dx

−
∫ 1

0
ft(ψ

′(ux)uxx)t(T ) dx+

∫ T

0

∫ 1

0

1

2
[ϕ′(t, x, ux)ψ′(ux)]tu

2
txx dx dt

−
∫ T

0

∫ 1

0
ϕ′(t, x, ux)utxx[ψ′′′(ux)utxu

2
xx+ψ′′(ux)2uxxutxx]+ϕ′(t, x, ux)utxxψ

′′(ux)utxutxx dx dt

−
∫ T

0

∫ 1

0

1

2
ψ′′(ux)uxtu

2
ttx + [ψ′(ux)]tutxuttx dx dt

+

∫ T

0

∫ 1

0
[[ϕx(t, x, ux)]t + [ϕ′(t, x, ux)]tuxx]t(ψ

′(ux)uxx)t dx dt

−
∫ T

0

∫ 1

0
ftt(ψ

′(ux)uxx)t dx dt−
∫ T

0

∫ 1

0
(at + as)(t, x, t)ψ(ux)xt(0)(ψ′(ux)uxx)t dx dt

−
∫ 1

0
a(T, x, T )ψ(ux)xt(0)(ψ′(ux)uxx)t(T ) dx+

∫ 1

0
a(0, x, 0)ψ(ux)xt(0)(ψ′(ux)uxx)t(0) dx

−
∫ T

0

∫ 1

0

[∫ t

0
at(t, x, t− s)ψ(ux)xt(s) ds

]
t

(ψ′(ux)uxx)t dx dt

−
∫ 1

0

∫ T

0
at(T, x, T − s)ψ(ux)xt(s) ds(ψ′(ux)uxx)t(T ) dx

Here the left-hand side larger or equal to

1

2
cψ‖uttx(T )‖22 +

1

2
c2
ψ‖utxx(T )‖22 + lim

h→0

1

h2
Q(a, T,∆hψ(ux)xt)

11



and the terms on the right-hand side are by Hölder inequality less or equal to

1

2
Z(U0) +

1

2
CψZ(U0) + Z(Cψ)Z(U0) + F0Z(U0)

+ (εϕ + εϕν(T ) + εϕν(T ) + Cψν(T )2)‖ψ(ux)xt(T )‖2

+ F‖ψ(ux)xt(T )‖2 +
1

2
(εϕCψ + C2

ψν(T ) + C2
ψν(T ))‖utxx‖22

+ C2
ψ(ν(T )2 + 3ν(T ))(‖utxx‖22 + ‖uxx‖22)

+
1

2
Cψν(T )‖uttx‖22 + Cψν(T )‖utx‖2‖uttx‖2

+
(
εϕ +

√
E(T )(2εϕ + εϕ + εϕ + εϕ + ν(T )(εϕ + 2εϕ + 2Cψ) + Cψν

2(T )
)
‖ψ(ux)xt‖2

+ F‖ψ(ux)xt‖2 + ‖(at + as)(t, x, t)‖2Z(U0)‖ψ(ux)xt‖2
+ ‖a(T, ·, T )‖2CψU0‖ψ(ux)xt(T )‖2

+ ‖a(0, ·, 0)‖2Z(U0)

+ ‖ψ(ux)xt‖22(‖at(·, ·, 0)‖∞ + ‖att + ast‖L1
t,sL

∞
x

)

+ ‖ψ(ux)xt‖2‖ψ(ux)xt(T )‖2‖at(T, ·, T − ·)‖L1
sL

∞
x

Since |ψ(ux)xt|22, |ψ(ux)xt(T )|22 ≤ E(T ) and ν(T ) ≤
√
E(T ) and by Young inequality

we have

1

2
cψ‖uttx(T )‖22 +

1

2
c2
ψ‖utxx(T )‖22 + lim

h→0

1

h2
Q(a, T,∆hψ(ux)xt) ≤

CZ(U0) + CZ(F ) +
√
E(T )(εϕ + Cεϕ + εϕ)+

E(T )(5ε+2εϕ+2εϕ+εϕ+2εϕ+‖at(·, ·, 0)‖∞+‖att+ast‖L1
t,sL

∞
x

+‖at(T, ·, T−·)‖L1
sL

∞
x

)+

CE(T )3/2 + CE(T )2

Applying Young inequality to the third term on the right-hand side and using the
definition of εa and εϕ we obtain (15). �

Lemma 4.5 Let (A1) – (A6) hold and u ∈
⋂3
k=0C

3−k([0, T1), Hk(Ω)) is a solution
to (IDE), (Cu). Then

‖uttx(T )‖22 + ‖utxx(T )‖22 + ‖utx(T )‖22 + ‖uxx(T )‖22 + ‖utxx‖22 ≤
CZ(U0) + CZ(F ) + C(ε)ε2

ϕ + CE(T )(ε+ εϕ + εa) + CE(T )3/2 + CE(T )2 (27)

Proof. This estimate follows immediately summing the estimates (14) and (15) and
applying Lemma 6.1. �

Lemma 4.6 Let (A1) – (A6) hold and u ∈
⋂3
k=0C

3−k([0, T1), Hk(Ω)) is a solution
to (IDE), (Cu). Then

‖utt(T )‖22 + ‖uttt(T )‖22 + ‖uttt‖22 ≤
CZ(U0) + CZ(F ) + C(ε)ε2

ϕ + CE(T )(ε+ εϕ + εa) + CE(T )3/2 + CE(T )2

12



Proof. Taking L2-norms in (IDE) we have

‖utt(t)‖22 ≤ C‖uxx(t)‖22 +

∫ t

0
‖as(t, ·, t− s)‖2‖ψ′(ux(s))uxx‖2,xds+ ‖g(t)‖22,

hence,

‖utt(t)‖22 ≤ C‖uxx(t)‖22 + ‖as(t, ·, t− ·)‖L1
sL

2
x

max
s
‖uxx(s)‖2 + Z(F ) + Z(U0), (28)

Differentiating (IDE) with respect to t we obtain

uttt = (χ(t, x, ux)uxx)t + as(t, x, 0)ψ(ux)x+∫ t

0
(att + ats)(t, x, t− s)ψ(ux(s))xds+ gt. (29)

Taking L2-norm we have

‖uttt(t)‖22 ≤ ‖χt(t, ·, ux)‖∞‖uxx(t)‖22 + ‖χ′(t)‖∞ν(t)2‖uxx(t)‖22+

‖χ‖∞‖uxxt(t)‖22 + ‖as(t, ·, 0)‖∞‖uxx(t)‖22+

‖(att + ast)(t, x, t− s)‖L∞
x L1

s
max
s
‖uxx(s)‖22 + ‖gt(t)‖22. (30)

If we integrate the squared equation (29) over [0, T ] we obtain

‖uttt‖22 ≤ ‖χt‖L1
tL

∞
x

max
s
‖uxx(s)‖22 + ‖χ′‖L1

tL
∞
x

max
s
ν(s)2‖uxx(s)‖22+

‖χ‖∞‖uxxt‖22 + ‖as(t, ·, 0)‖∞,1 max
t
‖uxx(t)‖22+

‖(att + ats)a(t, x, t− s)‖L∞
x L1

st
max
s
‖uxx(s)‖22 + Z(U0) + Z(F ). (31)

Since all the terms on the right-hand sides in (28), (30), (31) are estimated in previous
lemmas, the assertion follows. �

Lemma 4.7 Let (A1) – (A6) hold and u ∈
⋂3
k=0C

3−k([0, T1), Hk(Ω)) is a solution
to (IDE), (Cu). Then

‖uttx(T )‖22 ≤ CZ(U0)+CZ(F )+C(ε)ε2
ϕ+CE(T )(ε+εϕ+εa)+CE(T )3/2 +CE(T )2

Proof. Using difference operators one can derive the following “integration by parts
formula” ∫ T

0

∫ 1

0
u2
ttx =

∫ T

0

∫ 1

0
utttutxx +

∫ 1

0
utxxutt(0)−

∫ 1

0
utxxutt(T ).

The assertion then easily follows using Young inequality and previous estimates.
�
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Lemma 4.8 Let (A1) – (A6) hold and u ∈
⋂3
k=0C

3−k([0, T1), Hk(Ω)) is a solution
to (IDE), (Cu). Then

‖uxxx(T )‖22 + ‖uxxx‖22 + ‖uxx‖22 ≤
CZ(U0) + CZ(F ) + C(ε)ε2

ϕ + CE(T )(ε+ εϕ + εχ + εa) + CE(T )3/2 + CE(T )2

(32)

Proof. Rewrite (IDE) in the form

χ(0, 0, 0)uxx +

∫ t

0
as(0, 0, t− s)ψ′(0)uxx(s) ds = G(t, x), (33)

where

G = utt−g−(χ(t, x, ux)−χ(0, 0, 0))uxx−
∫ t

0
[as(t, x, t−s)ψ′(ux)−as(0, 0, t−s)ψ′(0)]uxx(s) ds.

By Lemma 3.2 in [4] there exists a resolvent kernel k ∈ L1(0,+∞) for (33) and

χ(0, 0, 0)uxx(t, x) = G(t, x) +

∫ t

0
k(t− s)G(s, x) ds. (34)

Differentiating with respect to x yields

χ(0, 0, 0)uxxx(t) = uttx − gx − (χ(t, x, ux)− χ(0, 0, 0))uxxx−

χx(t, x, ux)uxx−χ′(t, x, ux)u2
xx−

∫ t

0
[as(t, x, t−s)ψ′(ux)−as(0, 0, t−s)ψ′(0)]uxxx(s) ds−∫ t

0
[axs(t, x, t− s)ψ′(ux) + as(t, x, t− s)ψ′′(ux)uxx]uxx(s) ds (35)

Squaring this equation and integrating over Ω yields

χ2(0, 0, 0)‖uxxx(t)‖22 ≤ C(‖uttx(t)‖22+‖gx(t)‖22+|(χ(t, x, ux)−χ(0, 0, 0))|2∞‖uxxx(t)‖22+

εχE(t)+ν(t)2E(t)+

∫ t

0
‖as(t, ·, t−s)ψ′(ux(s, ·))−as(0, 0, t−s)ψ′(0)‖2∞ dsmax

s
‖uxxx(s)‖22+∫ t

0
‖asx(t, x, t− s)ψ′(ux) + as(t, x, t− s)ψ′′(ux)uxx‖2∞ dsmax

s
‖uxx(s)‖22.

Hence, since

|(χ(t, x, ux)−χ(0, 0, 0))|2∞ and

∫ t

0
‖[as(t, ·, t−s)ψ′(ux(s, ·))−as(0, 0, t−s)ψ′(0)]‖2∞ ds

are bounded by εχ and εa, we have

χ2(0, 0, 0)‖uxxx(t)‖22 ≤

C(‖uttx(t)‖22 + ‖gx(t)‖22 + (εχ + εa)E(t) + ν(t)2E(t) + max
s
‖uxx(s)‖22).
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Integration of (35) over [0, T ] yields

χ2(0, 0, 0)‖uxxx‖22 ≤ C(‖uttx‖22 + ‖gx‖22+

‖(χ(·, ·, ux)− χ(0, 0, 0))‖2L2
tL

∞
x

max
s
‖uxxx(s)‖22 + εχE(t) + ν(t)2E(t)+∫ T

0

∫ t

0
‖[as(t, ·, t− s)ψ′(ux(s, ·))− as(0, 0, t− s)ψ′(0)]‖2∞ ds dtmax

s
‖uxxx(s)‖22+∫ T

0

∫ t

0
‖asx(t, x, t− s)ψ′(ux) + as(t, x, t− s)ψ′′(ux)uxx‖2∞ ds dtmax

s
‖uxx(s)‖22,

hence,

χ2(0, 0, 0)‖uxxx‖22 ≤ C(‖uttx‖22 + ‖gx‖22 + εχE(t) + ν(t)2E(t) + sup
s
‖uxx(s)‖22).

Finally, squaring and integrating (34) we obtain

χ2(0, 0, 0)‖uxx‖22 ≤ C(‖utt‖22+‖g‖22+‖(χ(·, ·, ux)−χ(0, 0, 0))‖2L2
tL

∞
x

max
s
‖uxx(s)‖22+∫ T

0

∫ t

0
‖[as(t, ·, t− s)ψ′(ux(s, ·))− as(0, 0, t− s)ψ′(0)]‖2∞ ds dtmax

s
‖uxx(s)‖22,

The assertion follows from this estimate and the estimates proved in the previous
lemmas. �

Remark 4.9 The derivatives of u of lower order can be easily estimated by the
derivatives of higher order and the Poincaré inequality.

5 Proofs of the main results

Let us mention that if χ, a, g and u0 satisfy (A1) – (A6), then also ϕ satisfies the
regularity condition in (A1) and f satisfies (A4). Further, it is sufficient to assume
that χ(t, x, 0) > 0 and χ(t, x, 0)− a(t, x, 0)ψ′(0) > 0 and we obtain the lower bound
for χ, ϕ, ψ in (A1) if the set B is small enough. Moreover, if U0(u0, u1) is small and
F (f) is small, then F (g) is also small, i.e. F (g) ≤ Z(F (f), U0), Z continuous and
Z(0, 0) = 0. We can also estimate

εϕ ≤ εχ + Cψ max
t∈J,x∈Ω

{at, ax, atx, att, attx}(t, x, 0).

If a is of the form a(t, x, t− s) = k(c(t, x), t− s), then we have

εa ≤ Z(εc),

where Z is continuous with Z(0) = 0 (depending only on ‖k‖C2(U×J)) and

εc := max
t,x
{ct, cx, ctx, ctt, cttx}(t, x) +

∫
J
|c̃tt(t)|+ |c̃t(t)|dt
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with c̃t(t) := maxx c(t, x). Further, if εc is small or k′, k′′, k′′′ are small, then εϕ is
small, provided εχ is small and (A2’) holds.
Proof.[of Theorem 2.2] The second equation of (1) has a solution c ∈ C4

b (R+ ×Ω)
with ct, ctt ∈ L1(J, L∞(Ω)). Then (A2) is satisfied and by the considerations above.
The assumption (A1) holds if B is sufficiently small and assumptions (A3), (A6)
follow from (A3’), (A6’) respectively.

Moreover, if C0(c0) is small, then εc is small and therefore εa is small and also εϕ
is small (since εχ is small). Therefore, the assumptions of Theorem 4.2 are satisfied
and the assertion of Theorem 2.2 follows from Theorem 4.2. �

Proof.[of Theorem 2.1] To show that Theorem 2.1 holds without smallness assump-
tions on the kernel a, we first observe (from the definition of εa) that J can be covered
by finitely many half-open subintervals J1, . . . , Jr that overlap a little and such that
εa < 1/C on each of them.

We would like to solve the equation on each of the intervals Ji separately and
glue the solutions together. Let ui be a solution on J i :=

⋃i−1
j=1 Jj and Ji = [Ti, Si)

with Ti ∈ J i. Since ui(Ti) satisfies (A3) and (A5), it can be taken as a new initial
value. Let us reformulate the equation (IDE) for ũ(t, x) := u(t+ Ti, x). We obtain

ũtt = χ̃(t, x, ũx)ũxx +

∫ t

0
ãs(t, x, t− s)ψ(ũx(s))xds+ g̃, (IDEi)

where χ̃(t, x, z) := χ(t+ Ti, x, z), ã(t, x, s) := a(t+ Ti, x, s) and

g̃(t, x) := g(t+ Ti) +

∫ Ti

0
a(t, x, t− s)ψ(ux(s, x))x ds.

Since the new data χ̃, ã, g̃ satisfy (A1) – (A6) and εã < 1/C, there exists a solution
to (IDEi) on J i provided

U(ũ0, ũ1) + F (g̃) + εϕ̃ + εχ̃ (36)

is sufficiently small. Continuing the solution ui by ũ we obtain a solution on
⋃i
j=1 Jj

and by induction we obtain a solution on J . It remains to show that we can guarantee
that (36) is small enough in each step.

There is no problem with εϕ̃, εχ̃. We can simply assume these quantities to be
small on the whole J . However, ũ0, ũ1 and g̃ depend on the solution on the previous
interval, so we have to be more careful. We will start from the last interval Jr and go
through the same scheme as in the proof of Theorem 4.2 and proceed to Jr−1, Jr−2,
. . . , J1.

We will denote the data on Jr by gr, ur0, ur1. We remind that ur0 = ur−1(Tr),
ur1 = ur−1

t (Tr) and

gr(t, x) := g(t+ Tr) +

∫ Tr

0
a(t, x, t− s)ψ(ur−1

x (s, x))x ds.

To obtain a solution on Jr we want gr, ur0, ur1 to be small enough. We will show that

U0(ur0, u
r
1) + F (gr) + εϕ + εχ ≤ µr, E(Tr) ≤ γr (37)
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follows from

U0(ur−1
0 , ur−1

1 ) + F (gr−1) + εϕ + εχ ≤ µr−1, E(Tr−1) ≤ γr−1 (38)

for appropriate µr−1, γr−1 (provided εϕ, εχ are small enough).
Let us go to Jr−1. Take γ such that γ < γr, γ < µr/4 and F r < µr/4, where

F r := sup{F (gr) : u is such that E(Tr) < γ}.

Further, we take γ so small that C
δ γ

3/2 < γ/4 and C
δ γ

2 < γ/4. Now, take µr−1 such
that

C

δ
Z(µr−1) +

C

δ
Z(µr−1)) +

C(ε)

δ
ε2
ϕ < γ/4 (39)

and set γr−1 := γ/4.
Let u be a solution on [0, Tr−1] with E(Tr−1) ≤ γr−1. Like in the proof of

Theorem 4.2, (38), (39) and the other conditions on γ yield E(t) < 3
4γ for the

solution ur on [0, Tr − Tr−1]. If ur is the continuation of u by ur, then we have
E(Tr) ≤ E(Tr−1) + 3

4γ ≤ γ ≤ γr and we have the second estimate in (37). Further
we have

U0(ur0, u
r
1) + F (gr) ≤ E(Tr) + F r ≤ µr

4
+
µr

4

and we have the first estimate in (37).
Applying the implication (38)⇒ (37) inductively, we obtain µ1, γ1. Since E(T1) =

E(0) ≤ Z(F,U0), we obtain that existence of a solution on J is gueranteed by (8)
and Theorem 2.1 is proved. �

6 Appendix

Lemma 6.1 Let k : J × Ω × J → R be of strong positive type. Then there exists
c > 0 such that for all T > 0 and w ∈ C([0, T ], L2(I)) the following inequality holds∫ t

0
‖w(s)‖22ds ≤ c

(
‖w(0)‖22 +Q(k, t, w) + lim inf

h↘0

1

h2
Q(k, t,∆hw)

)
(40)

for all t ∈ [0, T ).

Proof. Lemma 2.5 in [5] gives the result for convolution kernels independent of x.
In particular (40) holds if we replace k by e(t, x, t − s) := et−s. Since k is of strong
positive type, we have Q(k, t, w) ≥ c1Q(e, t, w) and Q(k, t,∆hw) ≥ c1Q(e, t,∆hw)
and the proof is complete. �

We formulate three lemmas for working with difference operators. Their proofs
are easy.

Lemma 6.2 Let f , w ∈ C(J). Then for every T ∈ (0, Tmax) and h small enough it
holds that∫ T

0
f(t)∆hw(t) dt = −

∫ T

0
∆hf(t)w(t+ h) dt+

(∫ T+h

T
−
∫ h

0

)
f(t)w(t) dt.
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Lemma 6.3 Let w ∈ C(J), a ∈ C(J × J). Then for every T ∈ (0, Tmax) and h
small enough it holds that∫ T

0

∫ h

0
a(t+h, t+h−s)w(s) ds∆hw(t) dt = −

∫ T

0

∫ h

0
∆ha(t+h, t+h−s)w(s) dsw(t+h) dt+(∫ T+h

T
−
∫ h

0

)∫ h

0
a(t+ h, t+ h− s)w(s) dsw(t) dt.

Lemma 6.4 Let a ∈ C1(J × J), w ∈ C(J). Then

∆h

∫ t

0
a(t, t− s)w(s) ds =

∫ h

0
a(t+ h, t+ h− s)w(s)+∫ t

0
[a(t+ h, t− s)− a(t, t− s)]w(s+ h) ds+

∫ t

0
a(t, t− s)∆hw(s)ds.
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