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AN OPTIMAL UNIFORM A PRIORI ERROR ESTIMATE

FOR AN UNSTEADY SINGULARLY PERTURBED PROBLEM

MILOSLAV VLASAK AND HANS–GÖRG ROOS

Abstract. A time–dependent convection–diffusion problem is discretized by the Galerkin finite
element method in space with bilinear elements on a general layer adapted mesh and in time by

discontinuous Galerkin method. We present optimal error estimates. The estimates hold true for

consistent stabilization too.
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We are ready to present the main result.

Theorem 1. Let u be an exact solution of (??) and U ∈ V τN be its discrete approx-
imation given by (??). Then

max
m=1,...,r

sup
Im

‖U − u‖ ≤ C
(
g2(N) + τ q+1

)
.(1)
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