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Abstract The paper will be concerned with fluid-structure interaction prob-
lem of compressible flow and elastic structure in 2D domains with a special
interest in medical applications to airflow in human vocal folds. The viscous
flow in a time dependent domain is described by the Navier-Stokes equations
written with the aid of the Arbitrary Lagrangian-Eulerian (ALE) method.
The equations of motion for elastic deformations of the human vocal folds
are coupled with the equations for the fluid flow using either loose or strong
coupling. The space discretization of the flow problem is carried out by the
discontinuous Galerkin finite element method. For the time discretization we
use a semi-implicit scheme. In order to derive the space-time discretization of
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Doleǰskova 1402/5, 182 00 Praha 8
E-mail: jaromirh@it.cas.cz

Adam Kośık
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versity, Sokolovská 83, 18675 Praha 8
E-mail: adam.kosik@atlas.cz
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versity, Sokolovská 83, 18675 Praha 8
E-mail: kucera@karlin.mff.cuni.cz



2 Jaroslava Hasnedlová at al.

the elastic body problem, we apply the finite element method using continu-
ous piecewise linear elements. For the time discretization we use the Newmark
scheme. Results of numerical experiments are presented.

Keywords fluid-structure interaction · compressible flow · ALE method ·
discontinuous Galerkin finite element method · coupling algorithms

Mathematics Subject Classification (2000) 74F10 · 65M60 · 65M12

1 Introduction

At the current speed of technology progress, the coupled problems describing
the interaction of fluid flow with elastic structure motion are of great impor-
tance in many fields of physical and technical sciences such as biomechanics,
aerospace, civil and mechanical engineering, etc.. The need of the modeling
of flow around flexible structures leads to the developement of a new scien-
tifical and technical discipline: the aeroelasticity. The aeroelasticity has many
important engineering and scientific applications (e.g. in aerospace industry
- aircraft design and safety; in civil engineering - stability of bridges, towers,
smokestacks or skyscrapers; in mechanical engineering - bladed machines, etc.).
The consequence of the aeroelastic effects can positively (the flow-induced vi-
bration producing voice in human vocal folds) or negatively (the flow-induced
vibration leading to material fatigue or inducing excessive noise generation)
affect the operation of the system. The problems of the interaction of fluid
flow with elastic structures were studied by a number of different methods in
several books (e.g. [1], [2], [3], [4], [5], [6], [7]). Mostly, simplified linearized
problems applied in technology are used. Recently, the research focuses also
on mathematical and numerical modeling of nonlinear coupled problems. This
represents complicated mathematical problems caused by the time-dependence
of the computational domain and by the necessity of coupling of the flow prob-
lem with the elasticity problem. Here, we can mention for example the papers
[8], [9], [10], [11]. In the case of overcoming the problems of coupling elasticity
of the body with the flow problem we need to solve difficulties linked with the
simulation of compressible flow. Due to the simulation of compressible flow in
the time dependent domain, which is affected by the behaviour of the elastic
structure, it is necessary to treat problems caused by nonlinear convection
dominating over diffusion, i.e. boundary layers and wakes for large Reynolds
numbers and instabilities caused by acoustic effects for low Mach numbers. A
suitable numerical method for the solution of compressible flow suffering from
mentioned difficulties is the discontinuous Galerkin finite element (DGFE)
method.

The paper is devoted to the numerical simulation of fluid-structure inter-
action. Especially we are focused on the modeling of flow-induced vibrations
of the human vocal folds during the phonation onset. It means that we need
to take into account the simulation of compressible viscous flow in a time-
dependent domain together with the elasticity behaviour of the channel walls
formed by an elastic structure.
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Our goal is the numerical finite element simulation of the interaction of 2D
compressible viscous flow in the glottal region with a compliant tissue of the
human vocal folds modeled by a 2D elastic layered structure. A question is
the mathematical and physical description of the mechanism for transforming
the airflow energy in the glottis into the acoustic energy representing the voice
source in humans. The primary voice source is given by the airflow coming
from the lungs that causes self-oscillations of the vocal folds. The voice source
signal travels from the glottis to the mouth, exciting the acoustic supraglottal
spaces, and becomes modified by acoustic resonance properties of the vocal
tract ([12]).

In [13] we can find an overview of the current state of mathematical models
for the human phonation process. Such models are valuable tools for provid-
ing insight into the basic mechanisms of phonation and in future could help
with surgical planning, diagnostics and voice rehabilitation. In current publi-
cations various simplified glottal flow models are used. They are based on the
Bernoulli equation ([12]), 1D models for an incompressible inviscid fluid ([14]),
2D incompressible Navier-Stokes equations solved by the finite volume method
([15]) or finite element method ([16]). Acoustic wave propagation in the vocal
tract is usually modeled separately using linear acoustic perturbation theory
([17]). Also the work [18], which is concerned with the finite volume solution of
the Navier-Stokes equations for a compressible fluid with prescribed periodic
changes of the channel cross-section of the glottal channel, can be found. The
phonation onset was studied by using the potential flow model and three-mass
lumped model for the vibrating vocal folds in [19] and for a 2D isotropic elastic
model of the vocal folds in [20].

In our case the flow problem is discretized in space by the discontinuous
Galerkin finite element method, using piecewise polynomial approximations, in
general discontinuous on interfaces between neighbouring elements. The time
discretization is carried out by the backward difference formula (BDF) in time.
The structural problem is approximated by conforming finite elements and
the Newmark method. The fluid-structure interaction is realized via weak or
strong coupling algorithms. The presented results of the numerical simulations
show the convergence tendencies of the developed schemes, comparison of the
influence of coupling algorithms and the long-time behaviour of the fluid-
structure system.

2 Continuous problem

In this section we shall focus on the problem of the interaction of a compressible
flow with an elastic structure.

2.1 Formulation of the flow problem

We consider a compressible flow in a bounded domain Ωt ⊂ IR2 depending on
time t ∈ [0, T ]. We assume that the boundary of Ωt is formed by three disjoint
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parts: ∂Ωt = ΓI ∪ ΓO ∪ ΓWt
, where ΓI is the inlet, ΓO is the outlet and ΓWt

denotes impermeable walls that may move in dependence on time.
The dependence of the domain Ωt on time is taken into account with the

use of the arbitrary Lagrangian-Eulerian (ALE) method, see e.g. [21]. It is
based on a regular one-to-one ALE mapping of the reference configuration Ω0

onto the current configuration Ωt:

At : Ω0 −→ Ωt, i.e. X ∈ Ω0 7−→ x = x(X, t) = At(X) ∈ Ωt. (1)

We define the domain velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0, (2)

z(x, t) = z̃(A−1(x), t), t ∈ [0, T ], x ∈ Ωt,

and the ALE derivative of a vector function w = w(x, t), w = (w1, . . . , w4)
T ,

defined for x ∈ Ωt and t ∈ [0, T ]:

DA

Dt
w(x, t) =

∂w̃

∂t
(X, t), (3)

where
w̃(X, t) = w(At(X), t), X ∈ Ω0, x = At(X). (4)

Then, using the relations

DAwi

Dt
=

∂wi

∂t
+ div (zwi)− wi div z, i = 1, . . . , 4, (5)

we can write the governing system consisting of the continuity equation, the
Navier-Stokes equations and the energy equation in the ALE form

DAw

Dt
+

2
∑

s=1

∂gs(w)

∂xs

+w divz =

2
∑

s=1

∂Rs(w,∇w)

∂xs

. (6)

See, for example [22]. Here

w = (w1, . . . , w4)
T = (ρ, ρv1, ρv2, E)T ∈ IR4, (7)

w = w(x, t), x ∈ Ωt, t ∈ (0, T ),

gs(w) = fs(w)− zsw, s = 1, 2,

f i(w) = (fi1, · · · , fi4)
T = (ρvi, ρv1vi + δ1i p, ρv2vi + δ2i p, (E + p)vi)

T
,

Ri(w,∇w) = (Ri1, . . . , Ri4)
T =

(

0, τVi1 , τ
V
i2 , τ

V
i1 v1 + τVi2 v2 + k∂θ/∂xi

)T
,

τVij = λ divv δij + 2µdij(v), dij(v) =
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

.

We use the following notation: ρ – density, p – pressure, E – total energy,
v = (v1, v2) – velocity, θ – absolute temperature, γ > 1 – Poisson adiabatic
constant, cv > 0 – specific heat at constant volume, µ > 0, λ = −2µ/3 –
viscosity coefficients, k – heat conduction, τVij – components of the viscous
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part of the stress tensor. The vector-valued function w is called state vector,
the functions f i are the so-called inviscid fluxes and Ri represent viscous
terms. The above system is completed by the thermodynamical relations

p = (γ − 1)(E − ρ|v|2/2), θ =

(

E

ρ
−

1

2
|v|2

)

/cv. (8)

The resulting system is equipped with the initial condition

w(x, 0) = w0(x), x ∈ Ω0, (9)

and the following boundary conditions:

a) ρ|ΓI
= ρD, b) v|ΓI

= vD = (vD1, vD2)
T, (10)

c)
2

∑

i,j=1

τVij nivj + k
∂θ

∂n
= 0 on ΓI ,

d) v = zD = velocity of a moving wall, e)
∂θ

∂n
= 0 on ΓWt

,

f)

2
∑

i=1

τVij ni = 0, j = 1, 2, g)
∂θ

∂n
= 0 on ΓO.

2.2 Elasticity problem and fluid-structure interaction coupling

For the description of the deformation of an elastic structure we shall use the
model of dynamical linear elasticity formulated in a bounded open setΩb ⊂ IR2

representing the elastic body, which has a common boundary with the reference
domain Ω0 occupied by the fluid at the initial time. We denote by u(X, t) =
(u1(X, t), u2(X, t), X = (X1, X2) ∈ Ωb, t ∈ (0, T ), the displacement of the
body. The equations describing the deformation of the elastic body Ωb have
the form

̺b
∂2ui

∂t2
+ C̺b

∂ui

∂t
−

2
∑

j=1

∂τ bij
∂Xj

= 0, in Ωb × (0, T ), i = 1, 2. (11)

Here τ bij are the components of the stress tensor defined by the generalized
Hooke’s law for isotropic bodies

τ bij = λbdivuδij + 2µbebij , i, j = 1, 2. (12)

By eb = {ebij}
2
i,j=1 we denote the strain tensor defined by

ebij(u) =
1

2

(

∂ui

∂Xj

+
∂uj

∂Xi

)

, i, j = 1, 2. (13)
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The Lamé coefficients λb and µb are related to the Young modulus Eb and to
the Poisson ratio σb as

λb =
Ebσb

(1 + σb)(1− 2σb)
, µb =

Eb

2(1 + σb)
. (14)

The expression C̺b ∂ui

∂t
, where C ≥ 0, is the dissipative structural damping of

the system and ̺b denotes the material density.
We complete the elasticity problem by initial and boundary conditions.

The initial conditions read

u(·, 0) = 0,
∂u

∂t
(·, 0) = 0 in Ωb. (15)

Further, we assume that ∂Ωb = Γ b
W ∪Γ b

D, where Γ b
W and Γ b

D are two disjoints
parts of ∂Ωb. We assume that Γ b

W is a common part between the fluid and
structure at time t = 0. This means that Γ b

W ⊂ ΓW0
. On Γ b

W we prescribe the
normal component of the stress tensor and assume that the part Γ b

D is fixed.
This means that the following boundary conditions are used:

2
∑

j=1

τ bijnj = Tni on Γ b
W × (0, T ), i = 1, 2, (16)

u = 0 on Γ b
D × (0, T ). (17)

By Tni , i = 1, 2, we denote the prescribed normal components of the stress
tensor and n(X) = (n1(X), n2(X)) denotes the unit outer normal to the body
Ωb on Γ b

W at the point X.
The structural problem consists in finding the displacement u satisfying

equation (11) and the initial and boundary conditions (15) - (17).
Now we shall deal with the formulation of the coupled FSI problem. We

denote the common boundary between the fluid and the structure at time t
by Γ̃Wt

. It is given by

Γ̃Wt
=

{

x ∈ IR2; x = X + u(X, t), X ∈ Γ b
W

}

. (18)

This means that the domain Ωt is determined by the displacement u of the
part Γ b

W at time t. The ALE mapping At is constructed with the aid of a
special stationary linear elasticity problem - see Section 4.1.

If the domain Ωt occupied by the fluid at time t is known, we can solve the
problem describing the flow and compute the surface force acting on the body
on the part Γ̃Wt

, which can be transformed to the reference configuration, i.e.
to the interface Γ b

W . In case of the linear elasticity model, when only small
deformations are considered, we get the transmission conditions

2
∑

j=1

τ bij(X)nj(X) = −
2

∑

j=1

τfij(x)nj(X), i = 1, 2, (19)
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where τfij are the components of the stress tensor of the fluid:

τfij = −pδij + τVij , i, j = 1, 2. (20)

The points x and X satisfy the relation

x = X + u(X, t). (21)

Further, the fluid velocity is defined on the moving part of the boundary Γ̃Wt

by the second transmission condition

v(x, t) = zD(x, t) =
∂u(X, t)

∂t
. (22)

Finally, we formulate the continuous FSI problem: We want to determine
the domain Ωt, t ∈ (0, T ] and functions w = w(x, t), x ∈ Ωt, t ∈ [0, T ]

and u = u(X, t), X ∈ Ω
b
, t ∈ [0, T ] satisfying equations (6), (11), the

initial conditions (9), (15), the boundary conditions (10), (16), (17) and the
transmission conditions (19), (22).

This FSI problem is strongly nonlinear. In the sequel we shall be concerned
with its numerical solution.

3 Discrete problem

This part will be devoted to the description of the numerical methods used
for the solution of the separately considered flow and structural model.

3.1 Discretization of the flow problem

For the space semidiscretization of the flow problem we use the discontinuous
Galerkin finite element method (DGFEM).

We construct a polygonal approximation Ωht of the domain Ωt. By Tht we
denote a partition of the closure Ω̄ht of the domain Ωht into a finite number of
closed triangles K with mutually disjoint interiors such that Ω̄ht =

⋃

K∈Tht
K.

The approximate solution will be sought in the space of piecewise polynomial
functions

Sht = [Sht]
4 with Sht = {v; v|K ∈ P r(K) ∀K ∈ Tht}, (23)

where r ≥ 1 is an integer and P r(K) denotes the space of all polynomials on
K of degree ≤ r. A function ϕ ∈ Sht is, in general, discontinuous on interior
faces of the triangulation.

The discrete problem is derived in the following way: We multiply system
(6) by a test function ϕh ∈ Sht, integrate over K ∈ Tht, apply Green’s theo-
rem, sum over all elements K ∈ Tht, use the concept of the numerical flux and
introduce suitable terms mutually cancelling for a regular exact solution. More-
over, we carry out a linearization of the nonlinear terms. Then, the semidiscrete
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solution of problem (6) is defined as a function wh ∈ C1((0, T ),Sht) fulfilling
the conditions

∫

Ωht

DAwh

Dt
(t) ·ϕh dx+ dh(wh(t),ϕh) + bh(wh(t),ϕh) (24)

+ah(wh(t),ϕh) + Jh(wh(t),ϕh) = lh(wh(t),ϕh) ∀ϕh ∈ Sht, ∀t ∈ (0, T ),

wh(0) = w0
h, (25)

where w0
h is the L2(Ωh0)-projection of w0 on Sh0. This means that

(

w0
h,ϕh

)

=
(

w0,ϕh

)

∀ϕh ∈ Sh0. (26)

For a detailed description of the whole process and the definition of the forms
appearing in (24), see [22].

Because of the time discretization of (24) we construct a partition 0 = t0 <
t1 < t2 . . . of the time interval [0, T ] and define the time step τk = tk+1−tk. We
use the approximations wh(tn) ≈ wn

h ∈ Shtn , z(tn) ≈ zn, n = 0, 1, . . . , and

introduce the function ŵ
k
h = wk

h ◦Atk ◦A
−1
tk+1

, which is defined in the domain
Ωhtk+1

. The ALE derivative at time tk+1 is approximated by the first-order
backward finite difference

DAwh

Dt
(x, tk+1) ≈

wk+1
h (x)− ŵ

k
h(x)

τk
, x ∈ Ωhtk+1

. (27)

The remaining terms are treated with the aid of a partial linearization and
extrapolation in nonlinear terms. For details see [22].

3.2 Discretization of the structural problem

The space semidiscretization of the structural problem is carried out by the
conforming finite element method. By Ωb

h we denote a polygonal approxi-
mation of the domain Ωb. We construct a triangulation T b

h of the domain Ωb
h

formed by a finite number of closed triangles. Then the approximate solution of
the structural problem is sought in the finite-dimensional spaceXh = Xh×Xh,
where

Xh =
{

vh ∈ C(Ω̄b
h); vh|K ∈ P s(K), ∀K ∈ T b

h

}

. (28)

Here s ≥ 1 is an integer. In Xh we define the subspace V h = Vh × Vh, where

Vh =
{

yh ∈ Xh; yh|Γ̄ b

Dh

= 0
}

. (29)

The derivation of the space semidiscretization can be obtained in a standard
way by multiplying system (11) by any test function yhi ∈ Vh, i = 1, 2,
applying Green’s theorem and using the boundary condition (16). Using the
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notation u′
h(t) = ∂uh(t)

∂t
, u′′

h(t) = ∂2uh(t)
∂t2

, Tn = (Tn1 , Tn2 ) and defining the
form

ah(uh,yh) =

∫

Ωb

h

λbdivuh div yh dX (30)

+2

∫

Ωb

h

µb

2
∑

i,j=1

ebij(uh) e
b
ij(yh) dX,

we define the approximate solution of the structural problem as a function
t ∈ [0, T ] → uh(t) ∈ V h such that there exist derivatives u′

h(t), u
′′
h(t) and the

identity
∫

Ωb

h

ρbu′′
h(t) · yh dX + C

∫

Ωb

h

ρbu′
h(t) · yh dX + a(uh(t),yh) (31)

=

∫

ΓWh

Tnh (t) · yh dSX , ∀yh ∈ V h, ∀t ∈ (0, T ),

and the initial conditions

uh(X, 0) = 0, u′
h(X, 0) = 0, X ∈ Ωb

h, (32)

are satisfied. This approach leads to a system of ordinary differential equations.
The time discretization is carried out by the Newmark method.

4 Realization of the coupled FSI problem

In this section we shall describe the algorithm of the numerical realization of
the complete fluid-structure interaction problem.

4.1 Construction of the ALE mapping for fluid

The ALE mapping is constructed with the aid of an artificial stationary elastic-
ity problem. We seek d = (d1, d2) defined in Ω0 as a solution of the elastostatic
system

2
∑

j=1

∂τaij
∂xj

= 0 in Ω0, i = 1, 2, (33)

where τaij are the components of the artificial stress tensor

τaij = λadivdδij + 2µaeaij , eaij(d) =
1

2

(

∂di
∂xj

+
∂dj
∂xi

)

, i, j = 1, 2. (34)

The Lamé coefficients λa and µa are related to the artificial Young modulus
Ea and to the artificial Poisson number σa as in (14). The boundary conditions
for d are prescribed by

d|ΓI∪ΓO
= 0, d|ΓW0h\ΓWh

= 0, d(X, t) = u(X, t), X ∈ ΓWh. (35)
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The solution of (33) gives us the ALE mapping of Ω0 onto Ωt in the form

At(X) = X + d(X, t), X ∈ Ω0, (36)

for each time t.
System (33) is discretized by the conforming piecewise linear finite elements

on the mesh Th0 used for computing the flow field in the beginning of the
computational process in the polygonal approximation Ωh0 of the domain
Ω0.The use of linear finite elements is sufficient, because we need only to
know the movement of the points of the mesh.

If the displacement dh is computed at time tk+1, then in view of (36), the
approximation of the ALE mapping is obtained in the form

Atk+1h(X) = X + dh(X), X ∈ Ω0h. (37)

The knowledge of the ALE mapping at the time instants tk, tk+1 allows us
to approximate the domain velocity with the aid of the first-order backward
difference formula.

4.2 Coupling procedure

In the solution of the complete coupled fluid-structure interaction problem it is
necessary to apply a suitable coupling procedure. The general framework can
be found, e.g. in [23]. In our case we apply two different types of algorithms.

First, we present the weak coupling algorithm:

1. Compute the approximate solution of the flow problem (6) on the time
level tm.

2. Compute the corresponding stress tensor of the fluid τfij and the aerody-

namical force acting on the structure and transform it to the interface Γ b
Wh

by (19).
3. Solve the elasticity problem (31) - (32) and compute the deformation uh,m

at time tm. On the basis of (18) set

Γ̃Wtk+1
= {x = X + uh,m(X); X ∈ Γ b

W }, (38)

and determine the domain Ωhtm+1
.

4. Determine the ALE mapping Atm+1h by (33) and approximate the domain
velocity zh,m+1.

5. Set m := m+ 1, go to 1).

The strong coupling procedure represents a more complicated algorithm.
It follows this outline:

1. Assume that the approximate solution wm
h of the flow problem and the

deformation uh,m of the structure are known on the time level tm.
2. Set u0

h,m+1 := uh,m, k := 1 and apply the iterative process:
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(a) Compute the stress tensor of the fluid τfij and the aerodynamical force

acting on the structure and transform it to the interface Γ b
Wh.

(b) Solve the elasticity problem, compute the approximation of the defor-
mation uk

h,m+1 and construct the approximation Ωk
htm+1

of the flow
domain at time tm+1.

(c) Determine the approximations of the ALE mapping Ak
tm+1h

and the

domain velocity zk
h,m+1.

(d) Solve the flow problem in Ωk
htm+1

and obtain the approximate solution

wk
h,m+1.

(e) If the variation |uk
h,m+1 − uk−1

h,m+1| of the displacement is larger than
the prescribed tolerance and k < 50, go to a) and k := k + 1. Else
Ωhtm+1

:= Ωk
htm

, wm+1
h := wk

h,m+1, um+1
h := uk

h,m, m := m + 1 and
goto 2).

The difference between these two coupling algorithms is demonstrated by our
numerical results in what follows.

5 Numerical experiments

We consider the model of flow through a channel with two bumps which rep-
resent time dependent boundaries between the flow and a simplified model
of vocal folds (see Figure 1). The numerical experiments were carried out for

Fig. 1 Computational domain at time t = 0 with a finite element mesh and the description
of its size: LI = 50 mm, Lg = 15.4 mm, LO = 94.6 mm, H = 16 mm. The width of the
channel in the narrowest part is 1.6 mm.

the following data: magnitude of the inlet velocity vin = 4 m/s, the viscosity
µ = 15 ·10−6 kgm−1 s−1, the inlet fluid density ρin = 1.225 kgm−3, the outlet
pressure pout = 97611 Pa, the Reynolds number Re = ρinvinH/µ = 5227,
heat conduction coefficient k = 2.428 · 10−2 kgm s−2 K−1, the specific heat
cv = 721.428m2 s−2 K−1, the Poisson adiabatic constant γ = 1.4. The inlet
Mach number is Min = 0.012. The parameter of the computational accuracy
of the GMRES solver was 10−10. The Young modulus and the Poisson ratio
of the structure have the values Eb = 25000 Pa and σb = 0.4, respectively, the
structural damping coefficient is equal to the constant C = 100 s−1 and the
material density ρb = 1040 kgm−3. The artificial Young modulus Ea = 10000
and the Poisson ratio σa = 0.45. The used time step was 8 · 10−6s.
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Mesh Line used in graphs Flow part Structure part
Mesh 1 solid line 5398 1998
Mesh 2 dashed line 10130 2806
Mesh 3 dotted line 20484 4076

Table 1 Computational meshes.

Time step Line used in graphs Size
Time step 1 solid line 2 · 10−6 s
Time step 2 dashed line 4 · 10−6 s
Time step 3 dotted line 8 · 10−6 s

Table 2 Used time steps.

In the numerical experiments quadratic (r = 2) and linear (s = 1) elements
were used for the approximation of flow and structural problem, respectively.

Fig. 2 Allocation of the sensors.

First we shall compare the influence of the density of three computational
meshes on the total displacement at the point sensor 00 (see Figure 2). Table 1
contains the numbers of elements of the triangulations in the flow and structure
domains. The choosen time step was 8 · 10−6 s. The corresponding Fourier
analyses are carried out by the software Matlab. Figure 3 shows the behaviour
of the total displacement computed with the aid of the strong coupling. There
are also presented corresponding Fourier analyses. The influence of the mesh
density can be seen mainly in the graphs of the Fourier analyses of the solution
of Figure 3. We can observe that the dominating frequencies in all cases are
very close to each other.

Further we are interested in comparison of the influence of the time step
size on the total displacement at the point sensor 00 (see Figure 2). Table 2
contains the chosen time steps. Again the total displacement and the corre-
sponding Fourier analysis are presented. (see Figure 4). The computation was
carried out for the mesh with 10130 elements in the flow part. In this case we
can observe a good agreement of the results for all three different time steps.
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Fig. 3 Dependence of the total displacement on time and its Fourier analysis computed on
three meshes.

In order to compare an impact of the used coupling procedures we present
the graphs of the pressure amplitude

(p− paverage)(t) = p(A, t)−
1

T

∫ T

0

p(A, t)dt (39)

on the mesh 1 with time step τ = 2 · 10−6 s computed by the strong coupling
(solid line) and the weak coupling (dashed line). The position of the point A
is seen in Figure 5. Figure 6 shows that the difference between the Fourier
analyses obtained by the strong and weak coupling is not too large. The main
difference is in a higher stability of the strong coupling during the calcula-
tion on a long time interval. On the other hand, the strong coupling requires
naturally longer CPU time.

Now, let us deal with the flow field in the channel and the flow-induced
deformations of the vocal folds model. In what follows, we shall present the
results obtained by the computation on the coarse mesh (mesh 1 in Table



14 Jaroslava Hasnedlová at al.
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Fig. 4 Dependence of the total displacement on time and its Fourier analysis.

Fig. 5 Position of the point A in the flow channel, where the analysis of the convergence
tendency was carried out.

1). The coarse mesh was chosen in order to allow us the computation on the
long time interval in a reasonable time. The strong coupling was used. In
Figures 7 and 8 we can see the computational mesh and the velocity field near
the vocal folds at several time instants. Figures 9 and 10 show the pressure
isolines and the velocity isolines in the whole channel at same time instants as
in Figure 8. The maxima of the fluid velocity v ≈ 54 ms−1 and the pressure
2 kPa correspond to the parameters of normal phonation. We can observe
the Coanda effect represented by the attachment of the main stream (jet)
successively to the upper and lower wall and formation of large scale vortices
behind the glottis. The character of the vocal folds vibrations can be indicated
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Fig. 6 Comparison of the time dependence of the pressure amplitude at the point A (above)
and the Fourier analysis (below) obtained by the weak and strong coupling.

in Figure 11, which shows the displacements dx and dy of the sensor points
on the vocal folds surface (marked in Figure 2) in the horizontal and vertical
directions, respectively. Moreover, the fluid pressure fluctuations in the middle
of the gap as well as the Fourier analysis of the signals are shown here too.
The vocal folds vibrations are not fully symmetric due to the Coanda effect
and are composed of the fundamental horizontal mode of vibration with the
corresponding frequency 113 Hz and by the higher vertical mode with the
frequency 439 Hz. The increase of vertical vibrations due to the aeroelastic
instability of the system results in a fast decrease of the glottal gap. At about
t = 0.2 s, when the gap is nearly closed, the fluid mesh deformation in this
region is too high and the numerical simulation stopped. The dominant peak at
439 Hz in the spectrum of the pressure signal corresponds well to the vertical
oscillations of the glottal gap, while the influence of the lower frequency 113 Hz
associated with the horizontal vocal folds motion is in the pressure fluctuations
negligible. The modeled flow-induced instability of the vocal folds is called
phonation onset followed in reality by a complete closing of the glottis and
consequently by the vocal folds collisions producing the voice acoustic signal.
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Fig. 7 Detail of the mesh and the velocity distribution in the vicinity of the narrowest part
of the channel at time instants t = 0.1950, 0.1957, 0.1963, 0.1970 s.
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Fig. 8 Detail of the mesh and the velocity distribution in the vicinity of the narrowest part
of the channel at time instants t = 0.1976, 0.1982, 0.1989, 0.1995 s.
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Fig. 9 Velocity isolines at time instants t = 0.1976, 0.1982, 0.1989, 0.1995 s.

Fig. 10 Isolines of the field p− pout (pressure related to the outlet value) at time instants
t = 0.1976, 0.1982, 0.1989, 0.1995 s.

6 Conclusion

As seen from our numerical experiments, we have presented a robust method
for the numerical simulation of the interaction of compressible flow with elastic
structure with applications to the computation of flow-induced vibrations of
vocal folds during phonation onset.

Future work should be concentrated on the realization of a remeshing in the
case of closing the glottal channel during the oscillation period of the channel
walls, the use of nonlinear elasticity models including vocal folds collision and
the identification of the acoustic signal.
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Fig. 11 Vibrations of sensor points 00 and 01 on the vocal folds and their Fourier analyses
and the fluid pressure fluctuations in the middle of the gap and their Fourier analysis.
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and Mattheus, W. and Mongeau, L. and Nauman, E. and Schwarze, R. and Tokuda, I.
and Zörner, S., Mathematical models and numerical schemes for simulation of human
phonation, Current Bioinformatics, 6, 323–343 (2011)
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