Publication database of NCMM , project MORE and MathMAC center.
Publications for topic "Research Team 2 - MU AV" sorted by first author

F


P

Poul, Lukáš, Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains (2007), in: Discrete and Continuous Dynamical Systems - Series A:Dynamical Systems and Differential Equations. Proceedings of the 6th AIMS International Conference, suppl.(834--843)
[URL]

B


F


B

Bucur, Dorin, Feireisl, Eduard and Nečasová, Šárka, Influence of wall roughness on the slip behaviour of viscous fluids (2008), in: Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 138:5(957--973)
[URL]

F


B

Březina, Jan and Novotný, Antonín, On weak solutions of steady Navier-Stokes equations for monatomic gas (2008), in: Comment. Math. Univ. Carolin., 49:4(611--632)
[URL]

A


N


M


K

Kreml, Ondřej and Pokorný, Milan, A regularity criterion for the angular velocity component in axisymmetric Navier-Stokes equations (2007), in: Electron. J. Differential Equations(No. 08, 10 pp. (electronic))
[URL]

D


F


K

Kreml, Ondřej, Mathematical results for some models of viscoelastic fluids, in: WDS 2007 - Proceedings of Contributed Papers, pages 198-203, 2007
[URL]

F

Feireisl, Eduard and Novotný, Antonín, Small Peclet number approximation as a singular limit of the full Navier-Stokes-Fourier system with radiation, pages 123-152, Birkhauser, Basel, volume In New directions in Mathematical Fluid Mechanics, A.V. Fursikov, G.P. Galdi, 2009

B


F

Feireisl, Eduard, Petzeltová, Hana and Rocca, Elisabetta, Existence of solutions to a phase transition model with microscopic movements (2009), in: Mathematical Methods in the Applied Sciences, 32:11(1345--1369)
[URL]

K

Kukučka, Peter, On the existence of finite energy weak solutions to the Navier-Stokes equations in irregular domains (2009), in: Mathematical Methods in the Applied Sciences, 32:11(1428--1451)
[URL]

F


L


C


K


F


K

Kukučka, Peter, Singular Limits of the Equations of Magnetohydrodynamics (2011), in: Journal of Mathematical Fluid Mechanics, 13:2(173-189)
[DOI]
[URL]

D


H


D

Ducomet, Bernard, Nečasová, Šárka and Vasseur, Alexis, On global motions of a compressible barotropic and selfgravitating gas with density-dependent viscosities (2010), in: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 61:3(479--491)
[DOI]
[URL]

K


W

Wroblewska, Aneta, Steady flow of non-Newtonian fluids - monotonicity methods in generalized Orlicz spaces (2010), in: Nonlinear Analysis: Theory, Methods & Applications, 72:11(4136--4147)
[DOI]
[URL]

A

Abels, Helmut, Krbec, Miroslav and Schumacher, Katrin, On the trace space of a Sobolev space with a radial weight (2008), in: Journal Function Spaces and Applications, 6:3(259-276)

K

Kreml, Ondřej and Pokorný, Milan, On the local strong solutions for the FENE dumbbell model (2010), in: Discrete and Continuous Dynamical Systems - Series S, 3(311-324)
[DOI]
[URL]

F

Feireisl, Eduard, Málek, Josef and Novotný, Antonín, Navier´s slip and incompressible limits in domains with variable bottoms (2008), in: Discrete and Continuous Dynamical Systems - Series S, 1:3(427-460)
[DOI]
[URL]

K

Kimura, M., Shape derivative of minimum potential energy: abstract theory and applications, in: Topics in mathematical modeling, pages 1-92, MATFYZPRESS, Charles University in Prague, 2008

Y

Yazaki, Shigetoshi, An area-preserving crystalline curvature flow equation, in: Topics in mathematical modeling, pages 169-213, MATFYZPRESS, Charles University in Prague, 2008

K

Krbec, Miroslav and Schmeisser, Hans Jurgen, Dimension-invariant Sobolev imbeddings, in: Function Spaces IX., Warszawa, pages 205-217, Polish Academy of Sciences, 2011

F


S


F


E

Edmunds, David, Hudzik, Henrik and Krbec, Miroslav, On weighted critical imbeddings of Sobolev spaces (2011), in: Matematische Zeitschrift, 268:1-2(585-592)
[DOI]

B


F

Feireisl, Eduard, Petzeltová, Hana, Rocca, Elisabetta and Schimperna, Giulio, Analysis of a phase-field model for two-phase compressible fluids (2010), in: Mathematical Models and Methods in Applied Sciences, 20:7(1129-1160)
[DOI]
[URL]

R


B

Březina, Jan, Asymptotic properties of solutions to the equations of incompressible fluid mechanics (2010), in: Journal of Mathematical Fluid Mechanics, 12:4(536-553)
[DOI]
[URL]

N


F


W


S


F


B

Bulíček, Miroslav, Feireisl, Eduard, Málek, Josef and Shvydkoy, Roman, On the motion of incompressible inhomogeneous Euler-Korteweg fluids (2010), in: Discrete and Continuous Dynamical Systems - Series S, 3:3(497-515)
[DOI]
[URL]

N


F

Farwig, Reinhard, Nečasová, Šárka and Neustupa, Jiří, On the essential spectrum of a {S}tokes-type operator arising from flow around a rotating body in the {$L^q$}-framework, in: Kyoto {C}onference on the {N}avier-{S}tokes {E}quations and their {A}pplications, pages 93--105, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007

K

Kučera, Petr, Neustupa, Jiří and Penel, Patrick, Navier-Stokes' equation with the generalized impermeability boundary conditions and initial data in domains of powers of the Stokes operator, in: Kyoto {C}onference on the {N}avier-{S}tokes {E}quations and their {A}pplications, pages 237--250, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007

N


F


N

Neustupa, Jiří and Penel, Patrick, The Navier-Stokes equation with inhomogeneous boundary conditions based on vorticity, in: Parabolic and {N}avier-{S}tokes equations. {P}art 2, pages 321--335, Polish Acad. Sci. Inst. Math., Warsaw, 2008
[DOI]

B


N


B


D


M


F


M


N


M


F

Feireisl, Eduard and Málek, Josef, On the Navier-Stokes equations with temperature-dependent transport coefficients (2006), in: Differ. Equ. Nonlinear Mech.(Art. ID 90616, 14 pp. (electronic))

H


K


F

Feireisl, Eduard, Mucha, Piotr B, Novotný, Antonín and Pokorný, Milan, Time-Periodic solutions to the full Navier–Stokes–Fourier system (2012), in: Archive for Rational Mechanics and Analysis, 204:3(745–786)
[DOI]
[URL]

P


M


N


K

Krbec, Miroslav and Schmeisser, Hans Jurgen, On dimension-free imbeddings II (2012), in: Revista Matemática Complutense, 25(247-265)
[DOI]